Вначале необходимо найти производную и приравнять ее к 0 для нахождения экстремумов:
y' = (6cosx)' = -6*sinx = 0, sinx=0, x=pi/2 + pi*k
Дан промежуток [-pi/2; 0], необходимо определить, какие именно точки из множества решений попадают в него:
k=-1, x=pi/2-pi=-pi/2 - принадлежит промежутку
Является ли х=-pi/2 - экстремумом? - посчитать знак производной ДО и ПОСЛЕ этой точки: производная меняет свой знак с плюса на минус: х=-pi/2 - максимум функции.
На [-pi/2; 0] функция убывает, значит наибольшее значение y(-pi/2)=0, наименьшее значение y(0)=6
можно решить двумя смотря в каком ты классе ну ты поймешь какой тебе вариант подойдет
Первый учитель проверяет 360:15=24 тетради в час, второй 360:10=36 тетрадей, третий 360:6=60 тетрадей, вместе будет 360:(24+36+60)=3часа
2 вариант решения:
1 учитель делает всю работу за 15 часов, а за один час он сделает 1/15 часть работы, второй сделает за один час 1/10 часть, а третий 1/6 часть. Тогда втроём за один час они сделают 1/15 + 1/10 + 1/6 = 2/30 + 3/30 + 5/30 = 10/30= 1/3 часть. Тогда всю работу они сделают за 1 : 1/3 = 1 * 3 = 3 часа ответ 3 ч потребуется на проверку всех тетрадей
Поделитесь своими знаниями, ответьте на вопрос:
Исследовать функцию методом дифференциального исчесления и построить график y=2x^3+15x^2+24x-2