Объяснение:
log(3) (5 - 5x) >= log (3) (x^2 -3x + 2) + log (3) (x+4)
log(a) b ОДЗ a>0 b>0 a≠1
итак ищем ОДЗ тело логарифма больше 0
1. 5 - 5x > 0 x < 1
2. x^2 - 3x + 2 > 0
D = 9 - 8 = 1
x12=(3+-1)/2=2 1
(х - 1)(х - 2) > 0
x∈ (-∞ 1) U (2 +∞)
3. x + 4 > 0 x > -4
ОДЗ x∈(-4 1)
так как основание логарифма больше 1, поэтому знак не меняется
5 - 5x ≥ (x^2 - 3x + 2)/(x + 4)
5(1 - x) ≥ (x - 1)(x - 2)/(x + 4)
5(x - 1) + (x - 1)(x - 2)/(x + 4) ≤ 0
(x - 1)(5(x+4)+x-2)/(x+4) ≤ 0
(х - 1)(6x + 18 )/(x+4) ≤ 0
6(х - 1)(x + 3 )/(x+4) ≤ 0
применяем метод интервалов
(-4)[-3] [1]
x ∈(-∞ -4) U [-3 1] пересекаем с ОДЗ x∈(-4 1)
ответ x∈[-3 1)
у=0,5х^4-4x^2 Substitution x²=u
f(x)=0,5u²-4u
0,5u²-4u=0
u(0,5u-4)=0
u₁=0 0,5u-4=0
0,5=4
u=8
Resubstitution x²=8
x=±√8 Tochki peresichenija aksy X P₁(0;0) P₂(√8;0) P₃(-√8;0)
Teper reshaem gde nahodjatsja Extrema
f'(x)=2x³-8x=0
2x(x²-4)=0
2x=0
x₁=0 x²-4=0
x²=4
x₂,₃=±2
Teper prowerjaem eti tochki na maximum ili na minimum, dlja etogo nam nuzhna 2 proizwodnaja
f''(x)=6x²-8=0
6×0-8=-8<0 menshe nolja znachit Maximum
6×2²-8=16> bolshe nolja znachit minimum
6×(-2)²-8=16> bolshe nolja znachit minimum
i eshe my delaem wywod chto parabala semetrichna k x-osi
teper reshaem znachenie y, dlja etogo wstawljaem 0, 2, -2 w f(x)=0
f(x)=0,5×0⁴-4×0²=0 Pmax(0;0)
f(x)=0,5×2⁴-4×2²=-8 Pmin(2;-8)
f(x)=0,5×(-2)⁴-4×(-2)²=8 Pin(-2;8)
Teper reshaem tochku peregiba, dlja etogo nam nuzhen f''(x)=0
f''(x)=6x²-8=0
6x²=8
x²=4/3
x₁,₂=√4/3≈1,3333333
f(x)=0,5×(√4/3)⁴-4(√4/3)²=-40/9≈-4,444444 Tochka peregiba P(√4/3;-40/9)
f(x)=0,5×(-√4/3)⁴-4(-√4/3)²=-40/9≈-4,444444 Tochka peregiba P(√-4/3;-40/9)
Поделитесь своими знаниями, ответьте на вопрос:
Решить уравнения! а) 1 -- х=13 6 б)8х+0.5=2.1 в)2.1=8х+0.5 г)13х-15=7х-5 д)15-(3х-1)=40 е)8х-(2х=4)=2(3х-2)
8х=1.6
х=0.2
в)-8х=0.5-2.1
-8х=-1.6
х=0.2
г)13х-7х=15-5
6х=10
х=0.6
д)15-3х+1=40
-3х=40-15-1
-3х=24
х=-8