Пусть одна из сторон образовавшегося прямоугольника равна х см, то другая - (24-х) см. Площадь прямоугольника вычисляются по формуле S=a*b, то S=x*(24-x)
Зададим функцию S(x)=x*(24-x), исследуем ее и найдем при каком значении она принимает наибольшее значение. S(x)=x*(24-x)=24x-x^2
D(S)=(0; 24)
S'(x)=24-2x
S'(x)=0, 24-2x=0
-2x=-24
x=12
Найдем значение производной данной функции слева S'(11)=2>0 и справа S'(13)=-2<0 от значения х=12. Значение производной меняется с + на -, значит функция в точке х=12 достигает своего максимума. Площадь прямоугольника будет наибольшей, если стороны его 12см и 12 см, т.е - квадрат
Пусть одна из сторон образовавшегося прямоугольника равна х см, то другая - (24-х) см. Площадь прямоугольника вычисляются по формуле S=a*b, то S=x*(24-x)
Зададим функцию S(x)=x*(24-x), исследуем ее и найдем при каком значении она принимает наибольшее значение. S(x)=x*(24-x)=24x-x^2
D(S)=(0; 24)
S'(x)=24-2x
S'(x)=0, 24-2x=0
-2x=-24
x=12
Найдем значение производной данной функции слева S'(11)=2>0 и справа S'(13)=-2<0 от значения х=12. Значение производной меняется с + на -, значит функция в точке х=12 достигает своего максимума. Площадь прямоугольника будет наибольшей, если стороны его 12см и 12 см, т.е - квадрат
Поделитесь своими знаниями, ответьте на вопрос:
Нужно! доказать что при любом а значение выражения положительно: 3) ( 3a+2)^2-6a(a+2)