Пусть искомые основания исходной трапеции равны a и b, а средняя линия равна c. Пусть средние линии двух меньших трапеций равны соответственно равны d и e (см. рисунок). Как известно, средняя линия трапеции равна полусумме оснований, значит (a+b)/2=20 ⇒ a+b=40. Выразим через a и b отрезки d и e: d=(a+c)/2=(a+(a+b)/2)/2=(a+a/2+b/2)/2=(3a/2+b/2)/2=3a/4+b/4, e=(b+c)/2=(b+(a+b)/2)/2=(b+a/2+b/2)/2=(a/2+3b/2)/2=a/4+3b/4. Тогда разность средних линий малых трапеций будет равна: e-d=a/4+3b/4-3a/4-b/4=b/2-a/2=(b-a)/2. По условию задачи эта разность равна 12 см, значит (b-a)/2=12 ⇒ b-a=24. Составим и решим систему уравнений относительно a и b:
Решим систему методом сложения: (1)+(2), получим 2b=64 ⇒ b=64/2=32 (см). Подставим получившийся результат в любое уравнение системы, например в (1): a+32=40 ⇒ a=40-32=8 (см). ответ: 8 см и 32 см.
shakhnina90
19.03.2022
1) f(x) - функция, графиком которой является парабола ветвями вниз, пересекающая ось Ох в двух точках. Значит, ее площадь фигуры, отсекаемой от параболы осью Ох, нужно рассчитывать как определенный интеграл этой функции от а до b, где а и b - точки, в которых f(x) обращается в нуль, т.е. корни уравнения 6+x-x^2=0. Найдем дискриминант D=1+24=25 и решим уравнение: x=(-1 плюс-минус 5)/(-2); х₁=-2; х₂=3. Итак, найдем площадь:
2) а) Сначала найдем точки пересечения графиков указанных функций, для чего решим уравнение
Площадь, которую мы должны найти, равняется модулю разности опред. интеграла функции у=х^2-х с пределами в точках 0 и 4 и площади треугольника, образованного прямой у=3х, осью абсцисс и прямой х=4. Катеты этого треугольника равны 4 и 12 (т.к. 4-0=4 и 3*4=12), значит площадь его равна 4*12/2=4*6=24. Найдем интеграл и вычтем из него 24.
ответ и решение в закрепе