используется формула сокращенного умножения разность кубов
а³-в³ = (а-в)(а²+ав+в²)
Natalya1070
30.11.2021
При x = 0 функция не существует на множестве действительных чисел. Раскроем модули при x≠0. 1) При x < 0: y = (x+2)|x+1| При x∈(-∞;-1] y = -(x+2)(x+1) При x∈[-1;0) y = (x+2)(x+1) 2) При x > 0: y = (x+2)|x-1| При x∈(0;1] y = -(x+2)(x-1) При x∈[1;+∞) y = (x+2)(x-1) График приложу отдельной картинкой. Будем пересекать этот график горизонтальной прямой y=m. 1) При m∈(-∞;0) одна точка пересечения 2) При m=0 три точки пересечения 3) При m∈(0;1/4) пять точек пересечения 4) При m=1/4 четыре точки пересечения 5) При m∈(1/4;2) три точки пересечения 6) При m∈[2;+∞) одна точка пересечения, так как точка сращения левой и правой частей функции является точкой устранимого разрыва (поэтому при m=2 не 2 точки пересечения, а одна). ответ: m=1/4.
Apresov
30.11.2021
Можно и индукцией доказать: База индукции: При n = 1: 1/(1*2) = 1/(1+1) - верно. Предположение индукции: Пусть при n = k верно следующее: 1/(1*2) + ,,, + 1/(k*(k+1)) = k / (k+1) Индукционный переход: Докажем, что 1/(1*2) + ,,, + 1/(k*(k+1)) + 1/((k+1)(k+2)) = (k+1) / (k+2) Заменим 1/(1*2) + ,,, + 1/(k*(k+1)) на k / (k+1), так как мы предположили верность этого равенства. Тогда должно выполняться следующее: k / (k+1) + 1/((k+1)(k+2)) = (k+1) / (k+2) Упростим левую часть: k / (k+1) + 1/((k+1)(k+2)) = k*(k+2) / ((k+1)(k+2)) + 1/((k+1)(k+2)) = (k^2+2k+1)/((k+1)(k+2))=(k+1)^2 / ((k+1)(k+2)) = (k+1)/(k+2). (k+1)/(k+2) = (k+1)/(k+2) - тождество, ч.т.д.
х³-8 = х³ -2³ = (х-2)(х²+2х+4)
используется формула сокращенного умножения разность кубов
а³-в³ = (а-в)(а²+ав+в²)