Nivanova995
?>

Дано утверждение: «Для всех натуральных n выполняется равенство 1 + 3 + 5 + … + 2(n – 1) = n2». Отсортируй беспорядочные этапы доказательств данного утверждения (сверху вниз

Алгебра

Ответы

snezhanaklimenkova

Объяснение: ответ на фото смотри


Дано утверждение: «Для всех натуральных n выполняется равенство 1 + 3 + 5 + … + 2(n – 1) = n2». Отсо
oksana77768

ответ

Соотношение параметров квадрата

Приведём формулы периметра Р и площади S квадрата через длину стороны а.

периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;

площадь квадрата S равна квадрату его стороны а: S = a²;

периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.

Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.

Вычисление увеличения периметра и площади квадрата

Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:

Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;

S1 = а1² = (3 * а)² = 9 * а².

После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:

для вычислений используем написанные выше формулы для площади S и периметра P;

чтобы узнать, во сколько раз увеличится периметр квадр

чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.

Согласно выше сказанного, ответим на вопросы задания:

во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);

во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).

заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.

ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.

Объяснение:

здесь показан ответ только цифрами 9 и 3 А ты вставь цифры которые даны в задание

VASILEVNA

ответ

Соотношение параметров квадрата

Приведём формулы периметра Р и площади S квадрата через длину стороны а.

периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;

площадь квадрата S равна квадрату его стороны а: S = a²;

периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.

Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.

Вычисление увеличения периметра и площади квадрата

Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:

Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;

S1 = а1² = (3 * а)² = 9 * а².

После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:

для вычислений используем написанные выше формулы для площади S и периметра P;

чтобы узнать, во сколько раз увеличится периметр квадр

чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.

Согласно выше сказанного, ответим на вопросы задания:

во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);

во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).

заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.

ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дано утверждение: «Для всех натуральных n выполняется равенство 1 + 3 + 5 + … + 2(n – 1) = n2». Отсортируй беспорядочные этапы доказательств данного утверждения (сверху вниз
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

AndreevManaeva
Yevgenevich
ynikolaev2657
elyashatdinova
whitecatrussia5398
Тамара_Григорьевна897
groomingprofi56
Stepanovich_Makarov
vusokaya13
Aleksei
Imarmy67
missmorozova2
Gesper63
donertime8
Popova-Erikhovich