(x-xo)²+(y-yo)²=R² - уравнение окружности, где (хо; уо) - центр окружности, R - радиус окружности
А(3;1) и В(-1;3) - точки окружности => { (3-xo)²+(1-yo)²=R² { (-1-xo)²+(3-yo)²=R² => (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)² По условию, центр окружности лежит на прямой 3x-y-2=0 => y=3x-2 => yo=3xo-2 Подставляем найденное уо в равенство (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)², получим: (3-xo)²+(1-3xo+2)²=(-1-xo)²+(3-3xo+2)² (3-xo)²+(3-3xo)²=(1+xo)²+(5-3xo)² 9+xo²-6xo+9+9xo²-18xo=1+xo²+2xo+25+9xo²-30xo 18-24xo=26-28xo 4xo=8 xo=2 yo=3*2-2=6-2=4 S(2;4) - центр окружности Находим квадрат радиуса окружности: R²=(3-2)²+(1-4)²=1²+(-3)²=1+9=10 Запишем полученное уравнение окружности: (x-2)²+(y-4)²=10
VladimirovnaViktorovich
22.04.2020
Для решения задач на движение существует готовая формула s = v * t - формула пути s - расстояние 1 м 25 см = 125 см v - скорость 54 см/ч t - время ? t = 125 cм : 54 см/ч = 2 целых 17/54 часа = 2 ч 18,(8) мин ответ: за 2 часа и примерно 19 минут.
Но уж если в условии задачи дали размеры гусеницы, попробуем использовать и эту величину. (начало пути) < 125 см > + 1 cм = 126 см (конец пути) t = 126 см : 54 см/ч = 126/54 = 2 18/54 = 2 1/3 часа - за это время гусеница преодолеет расстояние 125 см (вынесет свой хвост за отметку 125 см) 2 1/3 часа = 2 ч + (60 : 3) мин = 2 ч 20 мин. ответ: за 2 ч 20 мин.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Какой квадратный трехчлен имеет 2 корня? а) 4x2-4x+1; б) 3x2+2; в) 2x2-x-3; г) 3x2-2x+1.
где (хо; уо) - центр окружности, R - радиус окружности
А(3;1) и В(-1;3) - точки окружности =>
{ (3-xo)²+(1-yo)²=R²
{ (-1-xo)²+(3-yo)²=R² => (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)²
По условию, центр окружности лежит на прямой 3x-y-2=0 => y=3x-2 => yo=3xo-2
Подставляем найденное уо в равенство (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)², получим:
(3-xo)²+(1-3xo+2)²=(-1-xo)²+(3-3xo+2)²
(3-xo)²+(3-3xo)²=(1+xo)²+(5-3xo)²
9+xo²-6xo+9+9xo²-18xo=1+xo²+2xo+25+9xo²-30xo
18-24xo=26-28xo
4xo=8
xo=2
yo=3*2-2=6-2=4
S(2;4) - центр окружности
Находим квадрат радиуса окружности:
R²=(3-2)²+(1-4)²=1²+(-3)²=1+9=10
Запишем полученное уравнение окружности:
(x-2)²+(y-4)²=10