gip5362
?>

Расстояние между двумя пристанями равно 91, 2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 1, 2 ч. лодки встретились. Скорость течения реки равна 3 км/ч. Скорость лодки в стоячей воде равна км/ч. Сколько километров до места встречи пройдёт лодка, плывущая по течению? км. Сколько километров до места встречи пройдёт лодка, плывущая против течения? км.

Алгебра

Ответы

alexanderpokrovskij6

Скорость лодки в стоячей воде 38 км/час.

Лодка по течению до встречи пройдёт 49,2 км.

Лодка против течения пройдёт 42 км.

Объяснение:

х = скорость лодки в стоячей воде.

х + 3 - скорость лодки по течению.

х - 3 - скорость лодки против течения.

Общая скорость лодок до встречи: 91,2 (общее расстояние) : 1,2 (общее время) = 76 (км/час).

(х + 3) + (х - 3) = 76

2х = 76

х = 38 (скорость лодки в стоячей воде).

Лодка по течению до встречи: (38 + 3) * 1,2 = 49,2 (км)

Лодка против течения до встречи: (38 - 3) * 1,2 = 42 (км)

enot1975
3\cos^2t - 4\cos t \geq 4
\\\
3\cos^2t - 4\cos t - 4 \geq 0
Решаем уравнение, соответствующее данному неравенству:
 3\cos^2t - 4\cos t - 4 \geq 0
\\\
D_1=(-2)^2-3\cdot(-4)=4+12=16
\\\
\cos t= \frac{2+4}{3} =2
\\\
\cos t= \frac{2-4}{3} =- \frac{2}{3}
Тогда решением исходного неравенства будут промежутки меньше меньшего корня и больше большего:
\left[\begin{array}{l} \cos t \leq - \frac{2}{3} \\ \cos t \geq 2 \end{array}
Второе неравенство не имеет решений, так как косинус не принимает значений больших 1.
Первое неравенство удобно решить с тригонометрического круга.
\arccos(- \frac{2}{3} )+2 \pi k \leq t \leq 2 \pi -\arccos(- \frac{2}{3} )+2 \pi k, \ k\in Z
ответ: \arccos(- \frac{2}{3} )+2 \pi k \leq t \leq 2 \pi -\arccos(- \frac{2}{3} )+2 \pi k, где k - целые числа

6\cos^2t+1 \ \textgreater \ 5\cos t
\\\
6\cos^2t-5\cos t+1 \ \textgreater \ 0
Можно на всякий случай вводить замены такого рода:
\cos t=x
\\\
6x^2-5x+1\ \textgreater \ 0
\\\
D=(-5)^2-4\cdot6\cdot1=25-24=1
\\\
x=\frac{5+1}{2\cdot6} = \frac{1}{2} 
\\\
x=\frac{5-1}{2\cdot6} = \frac{1}{3}
Тогда,
\left[\begin{array}{l} x\ \textless \ \frac{1}{3} \\ x\ \textgreater \ \frac{1}{2} \end{array}
\Rightarrow
\left[\begin{array}{l} \cos t\ \textless \ \frac{1}{3} \\ \cos t\ \textgreater \ \frac{1}{2} \end{array}
Решаем с тригонометрического круга:
x\in(-\frac{ \pi }{3}+2 \pi k ; \frac{ \pi }{3}+2 \pi k )\cup(\arccos \frac{1}{3}+2 \pi k ;2 \pi -\arccos \frac{1}{3} +2 \pi k), k\in Z
ответ: x\in(-\frac{ \pi }{3}+2 \pi k ; \frac{ \pi }{3}+2 \pi k )\cup(\arccos \frac{1}{3}+2 \pi k ;2 \pi -\arccos \frac{1}{3} +2 \pi k), где k - целые числа

4\cos^2t \ \textless \ 1
\\\
\cos^2t \ \textless \ \frac{1}{4} 
\\\
-\frac{1}{2} \ \textless \ \cos t \ \textless \ \frac{1}{2}
Значения табличные, но можно и на круге изобразить:
t\in(- \frac{2 \pi }{3} +2\pi k;- \frac{ \pi }{3} +2\pi k)\cup( \frac{ \pi }{3}+2\pi k ; \frac{2 \pi }{3} +2\pi k), \ k\in Z
ответ: t\in(- \frac{2 \pi }{3} +2\pi k;- \frac{ \pi }{3} +2\pi k)\cup( \frac{ \pi }{3}+2\pi k ; \frac{2 \pi }{3} +2\pi k), где k - целые числа

3\cos^2t \ \textless \ \cos t
\\\
3\cos^2t - \cos t\ \textless \ 0
\\\
\cos t(3\cos t - 1)\ \textless \ 0
\\\
\cos t(\cos t - \frac{1}{3} )\ \textless \ 0
\\\
0\ \textless \ \cos t\ \textless \ \frac{1}{3}
Решение на тригонометрическом круге:
x\in(- \frac{ \pi }{2}+2\pi k ;-\arccos \frac{1}{3} +2\pi k)\cup(\arccos \frac{1}{3}+2\pi k;\frac{ \pi }{2}+2\pi k), \ k\in Z
ответ: x\in(- \frac{ \pi }{2}+2\pi k ;-\arccos \frac{1}{3} +2\pi k)\cup(\arccos \frac{1}{3}+2\pi k;\frac{ \pi }{2}+2\pi k), где k - целые числа
Терентьева
Что бы решить данную систему графически:
1) Мы должны начертить на графике 2 функции по отдельности
2) Найти точки/точку пересечения графиков этих функций и определить координату данной\ых точки\точек.
Это координата\координаты и будет решением данной системы.

А теперь давайте решим данную систему графически:

Начертим  график функции y=2x^2 (во вложении, график параболы)

Теперь начертим график функции y=4x ( во вложении, график прямой)

Объединяем 2 графика: (график во вложении) 

И видим что 2 графика пересекаются в следующих координатах:
(0,0)
(2,8)
Эти координаты и есть решения данной системы.

Решите графически систему уравнений
Решите графически систему уравнений
Решите графически систему уравнений

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Расстояние между двумя пристанями равно 91, 2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 1, 2 ч. лодки встретились. Скорость течения реки равна 3 км/ч. Скорость лодки в стоячей воде равна км/ч. Сколько километров до места встречи пройдёт лодка, плывущая по течению? км. Сколько километров до места встречи пройдёт лодка, плывущая против течения? км.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

delta88
ismailovi670771
mshelen732
mahalama7359
fancy-decor67
diana-kampoteks
Serezhkin
daryagulyaeva
lukanaft
igortychinin
АндреевичЮлия
sve34166163
yulialoveinthelow2010
kirycha-2000719
Нозадзе_Новиков392