<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
Пусть х первое число, у- второе число, то х+у=80, 0,5х+0,25у=26.По условию задачи составим систему уравнение:
х+у=80 х=80-у х=80-у х=80-у
0,5х+0,25у=26 0,5(80-у)+0,25у=26 40-0,5у+0,25у=26 -0,25у=-14
х=80-у х=80-56 х=24 -первое число
у=56 у=56 у=56 -второе число
проверка:
24+56=80 0,5*24+0,25*56=26
80=80 12+14=26
26=26
ответ: первое число 24, второе 56
Поделитесь своими знаниями, ответьте на вопрос:
На дорозі між двома гірськими селами горизонтальних ділянок немае. автобус вгору їде зі швидкістю 15км/год а вниз 30км/год. яка вадстань між селами якщо відомо що шлях туди і назад автобус проїздить за 4 години
Розв’язання. Зрозуміло, що загальна довжина як підйомів, так і спусків на маршруті туди і назад дорівнює відстані між селами, яку позначимо через
x + x =4 (км),
тоді
x/15 + x/30 = 4
x=40 (км).
Відповідь. 40 км.