Раз прямая является касательной, значит есть точка пересечения, поэтому приравниваем эти два уравнения 28x^2+bx+15=-5x+8 28x^2+(b+5)x+7=0 раз точка касания единственная, значит дескриминант должен равен нулю D=b^2+10b-759 =0 решаем получаем 2 корня b1=-33, b2=23 подставляем в уравнение графика y1=28x^2-33x+15 и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем -5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая -5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
Значит ответ в=-33. Конец
Иванов
24.12.2022
Y=3x²+12x+16
График: парабола (вид y = ax²+bx+c). Ветви направлены вверх (a > 0). Точка пересечения о осью OY: 16 (c = 16). x вершина: -b/(2a) -12/6 = -2 y вершина: y=3(-2)²+12(-2)+16 = 4 Координаты вершины параболы: (-2;4).
Нули функции: 3x²+12x+16 = 0 D = 144 - 192 = -48 => D < 0. Отсюда: пересечений с осью OX нет.
Область определения D(y): (-∞;+∞) Область значения E(y): [-2;+∞)
Функция имеет положительные значения на промежутке: (-∞;+∞) Функция имеет отрицательные значения на промежутке: -
Функция возрастает на промежутке [-2;∞) Функция убывает на промежутке (-∞;-2]
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите области определения функции (1.1-1.5) 1) y = 3x + 7 2) y = 5x - 0.9 3) y = 8 - 2x 4) y = -1.4x + 13
28x^2+bx+15=-5x+8
28x^2+(b+5)x+7=0
раз точка касания единственная, значит дескриминант должен равен нулю
D=b^2+10b-759 =0
решаем получаем 2 корня b1=-33, b2=23
подставляем в уравнение графика y1=28x^2-33x+15
и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем
-5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая
-5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
Значит ответ в=-33. Конец