V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))
Милита1065
13.03.2021
1)При выполнении четырех арифметических действий (кроме деления на нуль) над рациональными числами всегда получаются рациональные числа. 2) Каждое рациональное число можно представить в виде бесконечной периодической десятичной дробиЭто бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр - период дроби. Например, 0,3333... = 0,(3) 1,057373... = 1,05(73) 3)Существуют стандартные обозначения для некоторых множеств. Например, − множество целых чисел; − множество рациональных чисел; − множество иррациональных чисел; − множество действительных чисел; − множество комплексных чисел.4)Это вместе взятые множества рациональных и иррациональных чисел, т.е. любое положительное число, отрицательное число или нуль. 5)Действительные числа образуют совокупность элементов, обладающую следующими свойствами. Если a и b - действительные числа (алгебраические, рациональные, целые, положительные целые), то таковыми же являются иa + b и ab (замкнутость), (1) a + b = b + a, ab = ba (коммутативность), (2) a + (b + c) = (a + b) + c = a + b + c, a(bc) = (ab)c = abc (ассоциативность), (3) a * 1 = a (единица), (4) a(b + c) = ab + ac (дистрибутивность),(5); из a + c = b + c следует a = b, из ca = cb, , следует a = b (сокращение). (6) 6) 7) Два числа, произведение которых равно 1, называются взаимно обратными. 8) 7-3 - числовое выражение, (8+3,2)·5,4 - тоже числовое выражение, и они имеют смысл 3+:)(+)-+ не имеет смысла 9)Математическое выражение, составленное из чисел, скобок и знаков арифметических действий называется числовым выражением. 10)Если в числовом выражении появляются буквы - оно становится буквенным выражением у+5, у-переменная величина 11)да например а+а+(а+а) причём а = 4 12)нет, потому что в нем нет букв 4 нельзя 4х можно 13) Одночлен − это произведение чисел и степеней переменных с натуральными показателями.
Например: 13a^3 b^2; 13x^12 y^11; 2(a^4)^3 c^7 (−9)z^11 . 14)Одночленом называется алгебраическое выражение, являющееся произведением букв и чисел.Эти буквы и числа называются множителями данного одночлена.Например, алгебраическое выражение ЗаЬс есть одночлен; его множителями являются число 3 и буквы а, Ь, с. 15)Одночлен – это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы. Например, 3 a 2 b 4 , b d 3 , – 17 a b c 16) Число 0 называется нулевым одночленом. 17)
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0
1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))