Чтоб найти числовое значение многочлена a2+2ay+y2 при a=8 и y=−7, нужно в выражение подставить известные значения а и у, и решить его.
а2 + 2ау + у2 = (8)2 + 2 * 8 * (- 7) + (- 7)2;
Возносим (8) и (- 7) квадрату:
(8)2 = 64;
(- 7)2 = 49;
Умножаем:
2 * 8 * (- 7) = 16 * (- 7) = - 112;
Подставляем значения в выражение:
64 + (- 112) + 49;
Раскрываем скобки:
64 - 112 + 49;
Вычитаем:
64 - 112 + 49 = - 48 + 49;
Добавляем:
- 48 + 49 = 1.
ответ: числовое значение многочлена a2+2ay+y2 при a=8, y=−7 равен 1
Поделитесь своими знаниями, ответьте на вопрос:
Блин решение через Дано: An-ap;npA1=10 d=4
Ширина нам неизвестна, поэтому её мы возьмём за 'X'
Длина на 10 больше ширины, значит на 10 больше 'X'
Ширина - x
Длина - x+10
S(площадь)=24см
Чтобы решить эту задачу, составим простое уравнение.
S(площадь)=длина*ширина
24 = (x+10)*x
24=x^2+10X
x^2+10x-24=0
D=b^2-4ac=196
x1=-12
x2=2
У нас получилось два корня, но -12 нам не подходит, потому что ширина прямоугольника не может быть отрицательной. Следовательно, ширина прямоугольника равна 2.
X=2 (Ширина)
X+10=2+10=12 (Длина)
Ширина - 2 см
Длина - 12 см