Метод первый: производными
f(2) = 25 - 5*24 + 7*23 - 2*22 + 4*2 - 8 = 32 - 80 + 56 - 8 + 8 - 8 = 88 - 80 - 8 = 0
Первая производная:
f'(x) = 5x4 - 20x3 + 21x2 - 4x + 4
f'(2) = 5 * 24 - 20*23 + 21*22 - 4*2 + 4 = 80 - 160 + 84 - 8 + 4 = 164 - 160 - 8 + 4 = 0
Вторая производная:
f''(x) = 20x3 - 60x2 + 42x - 4
f''(2) = 20 * 23 - 60*22 + 42*2 - 4 = 160 - 240 + 84 - 4 = 244 - 244 = 0
Третья производная:
f'''(x) = 60x2 - 120x + 42
f'''(2) = 60*22 - 120*2 + 42 = 240 - 240 + 42 = 42, не равно нулю => кратность равна количеству найденных производных.
Объяснение:
Задать вопрос
Войти
АнонимМатематика04 июля 16:31
Пусть х1 и х2 - корни уравнения 2х^2-7х-3+0. Составьте квадратное уравнение, корнями которого являются числа: а) х1-2
и х2-2; б) 1/х1 и 1/х2
РЕКЛАМА
Как весело провести время всей семьей?
Наборы для выпечки «Печем Дома» уже в Пятерочке!
Перейти
Научите ребенка печь вкусные маффины и кексы!
Наборы для выпечки «Печем Дома» – вкусно, весело, полезно!
Перейти
Лучший подарок для детей!
Наборы для выпечки «Печем Дома» уже в Пятерочке!
Перейти
ответ или решение1
Антонова Саша
Имеем квадратное уравнение:
2 * x^2 - 7 * x - 3 = 0;
Для того, чтобы найти значения выражений из задачи, воспользуемся теоремой Виета:
x1 + x2 = 7/2;
x1 * x2 = -3/2;
1) Воспользуемся теоремой Виета снова:
(x1 - 2) + (x2 - 2) = x1 + x2 - 4 = 7/2 - 4 = -1/2;
(x1 - 2) * (x2 - 2) = x1 * x2 - 2 * x2 -2 * x1 + 4 = x1 * x2 - 2 * (x1 + x2) + 4 = -3/2 - 7 + 4 = -3/2 - 3 = -9/2;
Получим уравнение:
2 * x^2 + x - 9 = 0;
2) 1/x1 и 1/x2;
1/x1 + 1/x2 = (x1 + x2)/(x1 * x2) = 7/2 : (-3/2) = -7/3;
1/x1 * 1/x2 = 1/(x1 * x2) = -2/3;
Получим уравнение:
3 * x^2 + 7 * x - 2 = 0.
Поделитесь своими знаниями, ответьте на вопрос:
Катеты прямоугольного треугольника относятся как 8 : 15, а гипотенуза равна 6, 8 м. найдите площадь треугольника.