Введем подстановку t = cos (3x), где |t| меньше или равен 1, т.к. функция cosx является ограниченной снизу -1, сверху +1.
Тогда исходное уравнение перепишется следующим образом:
2t^2 - 5t - 3 = 0.
Сейчас перед нами обыкновенное квадратное уравнение. Находим дискриминант и корни, если они будут.
D = b^2 - 4ac,
D = 25 + 24 = 49,
D>0 и значит уравнение имеет два корня.
t1 = (-b - корень из D) / (2a),
t1 = (5 - 7) / 4 = -1/2;
t2 = (-b + корень из D) / (2a),
t1 = (5 + 7) / 4 = 3;
Вернемся к подстановке t = cos (3x):
1) cos (3x) = -1/2,
3x = ± (2pi) / 3 + 2pi*k, где k - целое число;
x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.
2) cos (3x) ≠ 3, т.к. |t| ≤ 1.
ответ: x = ± (2pi)/9 + (2pi*k) / 3, где k - целое число.
1) Множество точек, удовлетворяющих неравенству ,
, лежат ниже прямой
.
Множество точек, удовлетворяющих неравенству
лежат внутри окружности с центром в точке ( 1 : 0) , радиуса R=2 .
2) Множество решений системы неравенств изображено на рисунке.
Область заштрихована . Это полоса между прямыми х= -2 и х=2 , расположенная выше прямой у=3 . Сами прямые в область не входят, так как неравенства имеют строгие знаки .
3) Фигура, изображённая на рисунке, может быть задана с системы неравенств .
Неравенство описывает множество точек, лежащих ниже прямой у=4 .
Неравенство описывает множество точек, расположенных внутри параболы
. Это можно определить, если рассматривать точку , которая находится внутри параболы , например, точка (1;2) , и точку с той же абсциссой х=1 , лежащую на параболе, имеющую ординату у=1²=1 . Сравним ординаты этих точек: 2>1 . Значит ординаты точек, находящихся внутри параболы, больше , чем ординаты точек, лежащих на параболе . Отсюда и получаем у≥х² .
Поделитесь своими знаниями, ответьте на вопрос:
Составь и реши уравнения с проверкой x; 28; 17; 87; y; 39