stark11
?>

Решите неравенство 5х-1, 5(2х+3)<4х+1, 5​

Алгебра

Ответы

Евгений

Объяснение:

5x-3x-4,5 <4x+1,5

2x-4,5 - 4x - 1,5<0

-2x - 6<0

2x + 6 > 0

2x > -6

x > -3

D(y) = x є (-3;+бесконечность)

Nataliya Aleksandr1197
Пусть расстояние между А и В (s) км,
скорость1 первого (х) км/час --ее нужно найти,
скорость2 (2х/3) км/час --она в 3/2 раза меньше скорости1,
скорость3 ((2х/3)-6) км/час --она на 6 км/час меньше скорости2
время в пути первого: (s/х) час
время в пути второго: (s/(2х/3))=(3s)/(2x) час
время в пути третьего: (s)/((2х/3)-6)=(3s)/(2x-18) час
10 минут = (1/6) часа
15 минут = (1/4) часа
получим систему уравнений:
3s/(2х) = (s/х) + (1/6) второй приехал позже --> время больше
3s/(2х-18) = 3s/(2х) + (1/4) третий приехал позже второго

3s/(2х) = (6s+х)/(6x)
3s/(2х-18) = (6s+х)/(4x) 

9sх = x(6s+х) 
6sх = (x-9)(6s+х) 

3sx = x²
54s+9x = x²

9x = (3x-54)s ---> s = 3x/(x-18)
x² = 3x * 3x/(x-18)
x-18 = 9
x = 27 (км/час) скорость первого велосипедиста
s = 3*27/9 = 9 (км)

ПРОВЕРКА:
скорость второго велосипедиста: 27:1.5 = 27*2/3 = 18 км/час
его (второго) время в пути: 9:18 = 1/2 часа = 30 минут
скорость третьего велосипедиста: 18-6 = 12 км/час
его (третьего) время в пути: 9:12 = 3/4 часа = 45 минут
время первого велосипедиста в пути: 9:27 = 1/3 часа = 20 минут
второй приехал на 30-20=10 минут позже первого)))
второй приехал на 30-45=-15 минут раньше третьего))) 
Николаев
Исходное неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ 1 \leq 3-x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1 \leq x-3 \leq 5 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -5 \leq x-3 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1+3 \leq x \leq 5+3 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -2 \leq x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 4 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right

x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;

а) неравенство эквивалентно:

-2 \leq x \leq 2 \ ;

x \in [ -2 ; 2 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

б) неравенство эквивалентно:

-2 \leq x-6 \leq 2 \ ;

6-2 \leq x \leq 2+6 \ ;

x \in [ 4 ; 8 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

в) неравенство эквивалентно:

-1 \leq x \leq 1 \ ;

x \in [ -1 ; 1 ] \ ;

Отрезок данного решения составляет половину от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;

г) неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 1 \leq 6-x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1 \leq x-6 \leq 2 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ -2 \leq x-6 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1+6 \leq x \leq 2+6 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 4 \leq x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 7 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right

x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;

Каждый из двух отрезков данного решения составляет четверть от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} + \frac{1}{8} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите неравенство 5х-1, 5(2х+3)<4х+1, 5​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Prokopeva1062
Троцкая-Ивановна
Antonov-Elena
Devaunka40
Динков
Pautova1119
Геннадьевна
andrewa
khadisovam9
ritckshulga20112
office46
Vova220
БашуроваОльга369
Leon-12
horst58