Правильное условие смотри в приложении.
2)
Площадь такой клумбы будет равна квадрату её стороны.
S = (a м)² = a² м²
3)
4(2-1,5x)-3(x-2) = 4·2-4·1,5x-3x-3·(-2) = 14-9x
При x = -0,7:
14-9x = 14-9·(-0,7) = 14+6,3 = 20,3
4)
5a-(7-2(3-a)-3) = 5a-(7-2·3-2·(-a)-3) = 5a-(2a-2) = 5a-2a+2 = 3a+2
5)
За 8 билетов по а руб. каждый, нужно заплатить a·8 руб. Остальные 15-8=7 билетов стоят по a+100 руб. Значит, за них нужно заплатить (a+100)·7 руб.
Тогда P = 8a + 7(a+100) = 8a+7a+700 = 15a+700 руб.
ответы:
2) S = a² м²
3) 20,3
4) 3a+2
5) P = 15a+700 руб.
Правильное условие смотри в приложении.
2)
Площадь такой клумбы будет равна квадрату её стороны.
S = (a м)² = a² м²
3)
4(2-1,5x)-3(x-2) = 4·2-4·1,5x-3x-3·(-2) = 14-9x
При x = -0,7:
14-9x = 14-9·(-0,7) = 14+6,3 = 20,3
4)
5a-(7-2(3-a)-3) = 5a-(7-2·3-2·(-a)-3) = 5a-(2a-2) = 5a-2a+2 = 3a+2
5)
За 8 билетов по а руб. каждый, нужно заплатить a·8 руб. Остальные 15-8=7 билетов стоят по a+100 руб. Значит, за них нужно заплатить (a+100)·7 руб.
Тогда P = 8a + 7(a+100) = 8a+7a+700 = 15a+700 руб.
ответы:
2) S = a² м²
3) 20,3
4) 3a+2
5) P = 15a+700 руб.
Поделитесь своими знаниями, ответьте на вопрос:
Запишите наименьшее пятизначное число , кратное 9, так, чтобы первая цифра его была 5 и все цифры были бы различны 35б
Так как нужно минимальное число и каждая цифра может встречаться только один раз, то a - обязательно равно 0.
Чтобы число было кратно 9, нужно, чтобы сумма его цифр была кратна 9.
Значит, b+c+d может быть равно одному из чисел: 4,13,22.
Следующая после 0 мин цифра - 1. Значит, b=1.
Тогда c+d=3 или c+d=12.
так как 0 и 1 уже "заняты", то минимальная сумма c+d=2+3=5>4. Значит, c+d=12.
с не может быть 2, значит оно равно 3, а d=9.
Получилось число 50139