В левой части неравенства угадывается формула квадрата суммы, всё, что осталось, переносим в правую часть.
Если нужно, чтобы у неравенства не было решений, правая часть должна была отрицательной:
Вспоминаем, что нужно найти такие b, чтобы такое неравенство выполнялось при всех a. Относительно a левая часть либо линейная функция (при b = 1/2), либо квадратичная.
Разбираем случаи:
1) b = 1/2. Тогда при всех a должно быть так: Понятно, что это выполняется не при всех a, так что b = 1/2 в ответ входить не должно.
2) b не равно 1/2. Квадратный трёхчлен должен принимать только положительные значения. Как известно, так будет, если: 1. Коэффициент при a^2 положительный и 2. Дискриминант отрицательный.
Первое условие:
Второе условие:
Окончательно 5/7 < b < 1
yana2211
27.05.2020
1)2х²+4х-10=0 Делим всё на 2. x²+2x-5=0. квадратное уравнение вида ax²+bx+c=0,a=1,b=2, c=-5 D=b²-4ac=2²-4·1·(-5)=4+20=24. √D=√24=2√6 x₁=(-b+√D)/2a=(-2+2√6)/2=2(√6-1)/2=(√6-1)/1=√6-1 x₂=(-b-√D)/2a=(-2-2√6)/2=-2(√6+1)/2=-(√6+1), где x₁=√6-1 и x₂=-(√6+1) корни уравнения. Теперь находим произведение корней уравнения: x₁·x₂=(√6-1)·(-1)·(√6+1)=(√6²-1²)·(-1)=-(6-1)=-5 2) [(3/(x-3)-(3/x)]·x+3/9=[[3x-3(x-3)]·x]/(x-3)·x +3/9=раскрываем скобки и сокращаем=[3x-3x+9]/(x-3)·x +3/9=9/(x-3)+3/9=первую дробь умножаем на 9, вторую умножаем на (x-3) =(81+3x²-9x)/(x-3)x=(81+3x-9)/(x-3)= =(72-3x)/(x-3)=3(24-x)/(x-3) 3) 4√0.0016-(1/2)√0.04=4·√(0.04)²-(1/2)·√(0.2)²=4·0.04-0.2÷2=0.16-0.1=0.06
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
1) интеграл от 3 до 6 7x^2dx 2)интеграл от 0 до пи/12 6cos6xdx