Грудинин604
?>

Используя алгоритм предыдкшем разложите многочлен на множители: а) а^2-5а+4

Алгебра

Ответы

daryagulyaeva
a^2-5a+4 \\ D=25-16=9=3^2 \\ a_1=(5-3)/2=1 \\ a_2=(5+3)/2=4 \\ \\ (a-a_1)(a-a_2)=0 \\ (a-1)(a-4)=0
Nikolaevich824

Объяснение:

Задание 1.

1) y' = 4x - 3

2) y' = 9 - 5x^5

3)y' = -6x^5 + 3cos(x)

4) y' = (2x + 4)(3x^2 + 2) + (6x)(x^2 + 4x)

5) y' = 6x^5 * sin(x) + cos(x) * x^6

6)y' = -2 / (x+3)^2

7)y' = (e^x - xe^x) / e^2x

8) y' = 8cos(8x)

9) y' = 20(4x-5)^4

10) y' = 8x/(√(8x^2 - 3))

Задание 2.

1) y' = -16x^3 + 6

2) y' = -3sin(x) - 2x

3) y' = -2x^(-3) - 3x^(-4)

4) y' = (-5x^4 + 3)(1.5x^2 + 1) + (3x)(-x^5 + 3x)

5) y' = 4 / cos^2(4x-5)

6) y' = 1 / (√(x) * cos^2(x))

7) y' = (cos(x) - sin(x)) / e^x

8) y' = 2x * (x^2 - 3x) - (2x - 3) * (x^2 - 2)

9) y' = 2e^(2x - 4)

10) y' = (-9x) / √(-9x^2 + 6)

zuelv

Найдем ограниченные линии

Найдем ограниченные линии1=e^x1=e

Найдем ограниченные линии1=e^x1=e x

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линии

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x −x)

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x −x) ∣

Найдем ограниченные линии1=e^x1=e x отсюда x=0x=0x=0 и x=2 - ограниченные линииПлощадь фигуры:\displaystyle \int\limits^2_0 {(e^x-1)} \, dx =(e^x-x)\big|^2_0=e^2-2-e^0+0=e^2-3 0∫2 (e x −1)dx=(e x −x) ∣∣

/

0

02

02

02 =e

02 =e 2

02 =e 2 −2−e

02 =e 2 −2−e 0

02 =e 2 −2−e 0 +0=e

02 =e 2 −2−e 0 +0=e 2

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e 2

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e 2 −3) кв. ед.

02 =e 2 −2−e 0 +0=e 2 −3 кв. ед.ответ: (e^2-3)(e 2 −3) кв. ед.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Используя алгоритм предыдкшем разложите многочлен на множители: а) а^2-5а+4
Ваше имя (никнейм)*
Email*
Комментарий*