secretar62
?>

Составьте многочлен 6 степени зависящий от x такой, что-бы он при каждом значении x принимал только 1)положительные 2)отрицательные значения​

Алгебра

Ответы

tarasova

ответ: +x^6. - x^6

объяснение:

Alenachernika9111
У=kx - уравнение прямой с b=0.

a)y=x+200 - уравнение прямой с k=1
Прямые имеют общую точку, если они не параллельны.
За угол наклона прямой отвечает параметр k. Если k1 (у=kx) = k2 (y=x+200), то прямые параллельны и не имеют общих точек. Значит, k≠1.

б)(y-yA)/(yB-yA) = (x-xA)/(xB-xA)
(y-1)/(-1-1) = (x+4)/(-1+4)
(y-1)/(-2) = (x+4)/(3)
y-1 = (-2x-8)/3
y = (-2x-8)/3 +1
y = -2x/3 -8/3 + 3/3
y = -2x/3 -5/3; k=-2/3 ; b=-5/3
Две прямые могут иметь только одну общую точку или не иметь их вообще. Значит, если прямые не параллельны, то имеют одну общую точку. Отсюда следует, что k≠-2/3
bagrjashv41
У=kx - уравнение прямой с b=0.

a)y=x+200 - уравнение прямой с k=1
Прямые имеют общую точку, если они не параллельны.
За угол наклона прямой отвечает параметр k. Если k1 (у=kx) = k2 (y=x+200), то прямые параллельны и не имеют общих точек. Значит, k≠1.

б)(y-yA)/(yB-yA) = (x-xA)/(xB-xA)
(y-1)/(-1-1) = (x+4)/(-1+4)
(y-1)/(-2) = (x+4)/(3)
y-1 = (-2x-8)/3
y = (-2x-8)/3 +1
y = -2x/3 -8/3 + 3/3
y = -2x/3 -5/3; k=-2/3 ; b=-5/3
Две прямые могут иметь только одну общую точку или не иметь их вообще. Значит, если прямые не параллельны, то имеют одну общую точку. Отсюда следует, что k≠-2/3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Составьте многочлен 6 степени зависящий от x такой, что-бы он при каждом значении x принимал только 1)положительные 2)отрицательные значения​
Ваше имя (никнейм)*
Email*
Комментарий*