Стадник620
?>

Выполните умножение: 1) (x-6)(x+6) 2) (3+x)(x-3) 3) (3b-5)(3b+5) 4) (5x+8y)(8y-5x)

Алгебра

Ответы

vadimkayunusov
1). x^2-36; 2). x^2-9; 3). 9b^2-25; 4). 64y^2-25x^2. 
Natalya1895
Можно воспользоваться заменой переменной:

\int (2x-3)\, dx=[t=2x-3\;,\; dt=d(2x-3)=(2x-3)'\, dx=2\, dx,\\\\dx=\frac{dt}{2}\, ]=\frac{1}{2}\cdot \int t\cdot dt=\frac{1}{2}\cdot \frac{t^2}{2}+C=\frac{1}{4}\cdot (2x-3)^2+C;\; \; \to \\\\\int _{-3}^2(2x-3)\, dx=\frac{1}{4}\cdot (2x-3)^2\, |_{-3}^2=\frac{1}{4}\cdot (1^2-(-9)^2)=\\\\=\frac{1}{4}\cdot (1-9)=-2

Можно воспользоваться формулой, что я считаю более квалифицированным ответом, так как если линейная функция будет не в 1 степени , а например, в 100-ой, то представить в виде многочлена такое выражение будет почти невозможно.Фактически формула выводится с подстановки ( или с подведения под знак дифференциала). Для степенной функции формула будет выглядеть так:

\int (ax+b)^{n}dx=\frac{1}{a}\cdot \frac{(ax+b)^{n+1}}{n+1}+C

Как видите, из этих соображение ответ во 2 пункте у вас неверен, так как там неправильно найдена первообразная от степенной функции (в основании которой находится линейная функция).
jeep75
1)При выполнении четырех арифметических действий (кроме деления на нуль) над рациональными числами всегда получаются рациональные числа.
2) Каждое рациональное число можно представить в виде бесконечной периодической десятичной дробиЭто бесконечная десятичная дробь, у которой начиная с некоторого десятичного знака повторяется одна и та же цифра или несколько цифр - период дроби. Например, 0,3333... = 0,(3)
1,057373... = 1,05(73)
3)Существуют стандартные обозначения для некоторых множеств. Например, − множество целых чисел; − множество рациональных чисел; − множество иррациональных чисел; − множество действительных чисел; − множество комплексных чисел.4)Это вместе взятые множества рациональных и иррациональных чисел, т.е. любое положительное число, отрицательное число или нуль. 
5)Действительные числа образуют совокупность элементов, обладающую следующими свойствами.     Если a и b - действительные числа (алгебраические, рациональные, целые, положительные целые), то таковыми же являются
иa + b и ab (замкнутость), (1)
a + b = b + a, ab = ba (коммутативность), (2)
a + (b + c) = (a + b) + c = a + b + c, a(bc) = (ab)c = abc (ассоциативность),  (3)
a * 1 = a (единица), (4)
a(b + c) = ab + ac (дистрибутивность),(5);
из a + c = b + c следует a = b, из ca = cb, , следует a = b (сокращение).  (6)
6)
7) Два числа, произведение которых равно 1, называются взаимно обратными.
8)   7-3 - числовое выражение,
(8+3,2)·5,4 - тоже числовое выражение, и они имеют смысл
3+:)(+)-+  не имеет смысла
9)Математическое выражение, составленное из чисел, скобок и знаков арифметических действий называется числовым выражением.
10)Если в числовом выражении появляются буквы - оно становится буквенным выражением
у+5, у-переменная величина
11)да например а+а+(а+а) причём а = 4
12)нет, потому что в нем нет букв
4 нельзя 
4х можно
13) Одночлен − это произведение чисел и степеней переменных с  
натуральными показателями.  

    Например:       13a^3 b^2;     13x^12 y^11;     2(a^4)^3 c^7 (−9)z^11 . 
14)Одночленом называется алгебраическое выражение, являющееся произведением букв и чисел.Эти буквы и числа называются множителями данного одночлена.Например, алгебраическое выражение ЗаЬс есть одночлен; его множителями являются число 3 и буквы а, Ь, с.
15)Одночлен – это произведение двух или нескольких сомножителей, каждый из которых либо число, либо буква, либо степень буквы. Например, 3 a 2 b 4 ,    b d 3 ,    – 17 a b c
16)  Число 0 называется нулевым одночленом.  
17)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выполните умножение: 1) (x-6)(x+6) 2) (3+x)(x-3) 3) (3b-5)(3b+5) 4) (5x+8y)(8y-5x)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

morozova4956
Artyom
sveta1864
Zeegofer
andreanikin
Хасанбиевич Колесников716
Nikolai172
migreen
jakushkinn
Vasilevna_Utenkova651
Косоногов Иосифовна
Докажите тождество 4sin^4a-4sin^2a=-sins^22a
sochi-expert
AkulovaAnastasiya
sadkofamily61
Strelkov-Roman1263