svetlana-ladyga
?>

2. выполните возведение в степень: а) (-3x^2y)^5 б) (4x^5y^2)^3

Алгебра

Ответы

Nadegdasb
a)
(-3x^2y)^5
-(3^2y)^5
-3^10y
-59049^y
б) 
(4x^5y^2)^3
4^3* (x^5^y^2)^3
64x^15y^2
2. выполните возведение в степень: а) (-3x^2y)^5 б) (4x^5y^2)^3
Shcherbakov_Artur1781

1.

а) (3y - 2)(3y + 2) = 9y² - 4

б) (3y - 1)² = 9y² - 6y + 1

в) (4a + 3k)(4a - 3k) = 16a² - 9k²


2.

(b-8)² - (64 - 6b) = b² - 16b + 64 - 64 + 6b = b² - 10b = b(b - 10)


3.

a) 25 - y² = (5 - y)(5 + y)

б) a² - 6ab + 9b² = a² - 2×1×3ab + (3b)² = (a - 3b)²


4.

36 - (6 - x)² = x(2,5 - x)

36 - (36 - 12x + x²) = 2,5x - x²

12x + x² = 2,5x - x²

2x² + 9,5x = 0

x(2x + 9,5) = 0

x = 0 или 2x = -9,5

x = 0 или x = -4,75

ответ: 0; -4,75


5.

а) (c² - 3a)(3a - c²) = -(3a - c²)(3a - c²) = -(3a-c²)²

б) (3x + x³)² = 9x² + 6x⁴ + x⁶

в) (3 - k)²(k+3)² = (3 - k)²(3+k)² = [(3-k)(3+k)]² = (9 - k²)²


6.

а) (3x - 2)² - (3x - 4)(4 + 3x) = 0

(3x - 2)² + (4 + 3x)² = 0

9x² - 12x + 4 + 16 + 24x + 9x² = 0

12x + 20 = 0

12x = -20

3x = -5

x = -5/3

б) 25y² - 64 = 0

y² = 64/25

y = ± 8/5


7.

а) 36a⁴ - 25a²b² = a²(36a² - 25b²) = a²(6a - 5b)(6a + 5b)

б) (x - 7)² - 81 = (x - 7 - 9)(x - 7 + 9) = (x - 16)(x + 2)

Kulikov1065

(x - 2)(x ^ 2 + |x - 1|) - x ^ 2 + 2x = 0 x ^ 3 + x|x - 1|- 2x ^ 2 - 2x| * x - 1| - x ^ 2 + 2x = 0 x ^ 3 + x

x|x - 1|- 3x ^ 2 - 2x| * x - 1| + 2x = 0 x ^ 3 + x

x * (x - 1) - 3x ^ 2 - 2(x - 1) + 2x = 0,

x - 1 >= 0 x ^ 3 + x(- (x - 1)) - 3x ^ 2 - 2x * (- (x - 1)) + 2x = 0

x - 1 < 0 x = 2 x = - 1,

x >= 1 x = 1 х = 1 х = 2 ,

X <1 x = 1 x = 2 x

x = 1 x = 2 Рішення x 1 =1,x 2 =2

x/(x + 5) - (1x + 51)/(5 - x) = 50/(x ^ 2 - 25) x/(x + 5) - (1x + 51)/(5 - x) = 50/(x ^ 2 - 25), x = - 5, x = 5 x/(x + 5) - (x + 51)/(5 - x) = 50/(x ^ 2 - 25) x/(x + 5) - (x + 51)/(5 - x) * 50/(x ^ 2 - 25) = 0 x/(x + 5) * (x + 51)/(- (x - 5)) * 50/((x - 5)(x + 5)) - 0 x/(x + 5) + (x + 51)/(x - 5) - 50/((x - 5)(x + 5)) = 0 (x(x - 5) + (x + 5)(x + 51) - 50)/((x - 5)(x + 5)) = 0 (x ^ 2 - 5x + x ^ 2 + 51x + 5x + 255 - 50)/((x - 5)(x + 5)) = 0 (2x ^ 2 + 41x + 10x + 205)/((x - 5)(x + 5)) = 0 (x(2x + 47) + 5(2x + 47))/((x - 5)(x + 5)) = 0 ((2x + 41)(x + 5))/((x - 5)(x + 5)) = 0 (2x + 41)/(x - 5) = 0 2x + 41 = 0 2x = - 41 x=- 41 2 ,x=-5.x=5 Рішення x = - 41/2 Альтернативна форма 1 1 x = - 20 - x=-20 5

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

2. выполните возведение в степень: а) (-3x^2y)^5 б) (4x^5y^2)^3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

shhelina
david-arustamyan1
Дмитрий1974
ilds88
Yurevich1701
lshimina65
PoleshchukTatyana
smook0695
Рощак_Ольга573
ustinov434
vrn3314
natkul22
olegtarasov1965
enot1975
osirparts7854