Модуль означает, что знак числа попросту отбрасывается. Чтобы избавиться от модуля, нужно рассмотреть два случая: когда выражение под знаком модуля неотрицательно (и тогда это модуль равен самому этому выражению), и когда выражение под знаком модуля отрицательно (и тогда это модуль равен выражению, взятому с обратным знаком). 1. Выражение под знаком модуля приравниваем нулю и решаем получившееся уравнение, чтобы узнать интервалы, на которых это выражение может менять свой знак. х-4=0 → х=4. 2. Рассматриваем случай х<4 При этом выражение отрицательно, следовательно |x-4| = 4-x -3|x-4|-x = -3(4-x)-x = -12+3x-x = 2x-12 = 2(x-6) 3. Рассматриваем случай x≥4 При этом выражение неотрицательно, поэтому |x-4| = х-4 -3|x-4|-x = -3(x-4)-x = -3x+12-x = -4x+12 = 4(3-x) 4. Объединяя два эти выражения, получаем
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Нужно каждое слово разобрать по орфаграмме номер 3: вся перемелица, мука будет
1)=8а²(в²-9с²)=8а²(в-3с)(в+3с).
2)=2(х²-12ху+36у²)=2(х-6у)².
3)=-2а(4а4-4а²+1)= -2а(2а²-1)².
4)=5(а³-8в6)=5(а³-(2в²)³)=5(а-2в²)(а²+2ав²+4в4)
5)=(а³+а²)-(ав-а²в)=а²(а+1)-ав(1+а)=(а+1)(а²-ав)=а(а+1)(а-в)
6)=с4(а-1)-с²(а-1)=(а-1)(с4-с²)=с²(а-1)(с²-1)=с²(а-1)(с-1)(с+1).
1)=(х-у)²-7²=(х-у-7)(х-у+7)
2)=а²-(3в-с)²=(а+3в-с)(а-3в+с)
3)=(в³)²-(2в²-3)²=(в³+2в²-3)(в³-2в²+3).
4)=(m³+3³n³)+(m+3n)²=(m+3n)(m²-3mn+9n²)+(m+3n)²=(m+3n)(m²-3mn+9n²+m+3n).
5)=x²-y²+2x+4y-3=(x²+2x+1)-(y²-4y+4)=(x+1)²-(y-2)²=(x+y-1)(x-y+3).