evgeniishulov4696
?>

Найдите наименьшее значение выражения x+y, если xy=16, и x> 0

Алгебра

Ответы

bulenbeiser
Наименьшее значение выражения х+у: 4+4=8 т.к. 4×4=16 или 2+8=10 т.е.2×8=10
innaterenina

Число 935.

Мы знаем, что первоначальное число трехзначное, и первая цифра 9. Пусть вторая и третья цифры будут x и y. Тогда у нас есть число 9xy. После того, как мы переставили 9 на последнее место, получилось число xy9. Далее считаем(лучше всего в столбик).

_9xy

   xy9

  576

Так как 6+ 9=15, то y=5, а десяток был взят из x. Тогда получаем пример:

_9x5

   x59

  576

Далее складываем 7+5=12, плюс тот десяток, который мы отдали y. Получается 13. Значит x=3, десяток брали из 9. Проверяем:

_935

   359

  576

 
olgapotapova
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.]
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.

\displaystyle z_1 = (x_1, \ y_1), \ z_2 = (x_2, \ y_2)\\\\
d(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\
0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1, \ 0 \leq y_1 \leq 1, \ 0 \leq y_2 \leq 1\\\\ - 1 \leq x_1 - x_2 \leq 1, \ - 1 \leq y_1 - y_2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 \leq 1, \ 0 \leq (y_1 - y_2)^2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 + (y_1 - y_2)^2 \leq 1 + 1 = 2\\\\
0 \leq \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \leq \sqrt{2}

Что и требовалось доказать.
Решите в квадрате со стороной 5 см расположено 26 точек. докажите, что среди них существуют две точк

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите наименьшее значение выражения x+y, если xy=16, и x> 0
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Татьяна_Полулях
kv135549
santechma
borisova-valeriya
Элизбарян
Станислав Роман994
SERGEI124
goodsled
Альберт Луиза1595
Аврамец1911
Яке із чисел більше : ​
adrinalin991
Манько_Панферов
Vos-sv
andreokiseleo69421
NikolayGoncharov