log_3(x+3)=log_3(x^2+2x-3) ОДЗ: x+3>0 => x>-3 x+3=x^2+2x-3 x^2+2x-3>0 x^2+2x-3-x-3=0 x^2+2x-3=0 x^2+x-6=0 x₁+x₂=-2 x₁+x₂=-1 x₁*x₂=-3 x₁*x₂=-6 x₁=-3; x₂=1 => x<-3; x>1 x₁=-3 - не входит в ОДЗ x>1 x₂=2 x=2
log_2(2x-1)-2=log_2(x+2)-log_2(x+1) ОДЗ: 2x-1>0 => x>0.5 log_2(2x-1)-log_2(4)= log_2(x+2)-log_2(x+1) x+2>0 => x>-2 log_2((2x-1)/4)=log((x+2)/(x+1)) x+1>0 => x>-1 (2x-1)/4=(x+2)/(x+1) x>0.5 (2x-1)(x+1)=4(x+2) 2x^2+x-1-4x-8=0 2x^2-3x-9=0 D=(-3)^2-4*2*(-9)=81 √81=9 x₁=3 x₂=-1.5 - не входит в ОДЗ х=3
log_5(2x^2-x)/log_4(2x+2)=0 ОДЗ: 2x^2-x>0 => x>0.5 log(4)log(2x^2-2)/log(5)log(2x+2)=0 2x+2>0 => x>-1 log(2x^2-x)/log(2x+2)=0 log(2x^2-x)=0 log(2x+2)≠0 2x^2-x=1 2x^2-x-1=0 D=9 x₁=1 x₂=-0.5 - не входит в ОДЗ x=1
log_2x(x^2+x-2)=1 ОДЗ: 2x>0 => x>0 log_2x(x^2+x-2)=log_2x(2x) x^2+x-2>0 x^2+x-2=2x x^2+x-2=0 x^2-x-2=0 x₁+x₂=-1 x₁+x₂=1 x₁*x₂=-2 x₁*x₂=-2 x₁=-2; x₂=1 x₁=2 x>1 x₂=-1 - не входит в ОДЗ x=2
milleniumwood633
31.10.2020
(x+2)(x-4)<0
Подробное объяснение: 1) Ищем нули функции: первая скобка равна нулю при х=-2 вторая скобка равна нулю при х=4 2) Рисуем числовую ось и расставляем на ней найденные нули функции - точки -2 и 4 (-2)(4) Точки рисуем с пустыми кружочками ("выколотые"), т.к. неравенство у нас строгое (знак < )
3) Начинаем считать знаки на каждом интервале, начиная слева-направо. Для этого берём любую удобную для подсчёта точку из интервала, подставляем её вместо икс и считаем знак: 1. х=-100 -100+2 <0 знак минус -100-4 <0 знак минус минус*минус=плюс Ставим знак плюс в крайний левый интервал + (-2)(4)
2. аналогично, х=0 0+2 >0 знак плюс 0-4 <0 знак минус плюс*минус=минус + _ (-2)(4)
3. x=100 100+2>0 знак плюс 100-4>0 знак плюс плюс*плюс=плюс + - + (-2)(4)
Итак, знаки на интервалах мы расставили. Смотрим на знак неравенства: < 0 Значит, нам надо взять только те интервалы, где стоят минусы. В данном случае, такой интервал один (-2;4) Это и есть ответ.
Теперь краткая запись решения: (х+2)(х-4)<0 + - + (-2)(4)
x∈(-2;4) ответ: (-2;4)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Какая из пар чисел является решением системы {2х+11=15 {10х-11у=9 а)(3; -1); ; 3); в)(2; 1); г)(1; 2)?