olgavlad199
?>

Известно что х1 и х2 корни уравнения х^2+7х-11=0. найдите значение выражения 2х1х2-х1-х2

Алгебра

Ответы

Алексей Шуклин
1) Пусть задача поставлена для функции y=ctg(2x)+sin(x).
ctg(2x) имеет множество значений (-inf;+inf). ctg(2x)+sin(x) тоже имеет множество значений (-inf;+inf). Поэтому прямая y=3-p имеет хотя бы одну общую точку с y=ctg(2x)+sin(x) при любых значениях p.
ответ: при любых значениях p.
2) Пусть задача поставлена для функции y=ctg²(x)+sin(x).
y=cos²(x)/sin²(x)+sin(x)=(1-sin²(x))/sin²(x)+sin(x)=1/sin²(x)+sin(x)-1
Требуется определить множество значений этой функции. Пусть sin(x) = t. Тогда y(x)=f(t)=1/t²+t-1. Наибольшее и наименьшее значения будем искать на отрезке t∈[-1;1], так как t=sin(x).
f'(t)=-2/t³+1=(t³-2)/t³.
Нули числителя: t=∛2
Нули знаменателя: t=0.
Расположим эти точки на числовой прямой.
f'>0             f'>0          f'<0          f'<0          f'>0
-1 0 1  ∛2 >
f   ↑                  ↑              ↓              ↓                ↑
На отрезке [-1;1] функция возрастает с -1 до 0-. Затем с 0+ до 1 убывает. Это значит, что наименьшее значение на отрезке [-1;1] достигается на одном из его концов. То есть min(f(-1),f(1))=min(1/(-1)²-1-1, 1/1²+1-1)=-1.
При стремлении t к 0- и к 0+ функция f(t) принимает сколь угодно большие значения. Поэтому множество значений функции f(t) и y(x) равно [-1;+inf).
y=3-p - горизонтальная прямая. Она имеет общую точку с графиком функции y(x)=1/sin²(x)+sin(x)-1, если пересекает множество значений y(x). Таким образом, 3-p>=-1, p<=4.
ответ: при p<=4.
nsmmkrtchyan
f(x)=3-4x+x^2\\g(x)=3-x^2

Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).

Алгоритм такой:
0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально.
1. Вычисляется площадь фигуры под g(x);
2. Теперь — под f(x);
3. Разность площадей g(x)-f(x) и будет искомой фигурой.

По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.

Поехали.

1)
\int\limits^{2} _0 {(3-x^2+1)} \, dx=(4x-x^3/3)|^{2}_0=8-8/3

2)
 \int\limits^2_0 {(3-4x+x^2+1)} \, dx =(4x-2x^2+x^3/3)|^2_0=8-8+8/3=8/3

3) 8-8/3-8/3=8-16/3=8/3 (кв. ед.)

Вроде бы так... :)
Попробую сейчас проверить решение. 
 
upd: да, всё сошлось.
 
Вычислите площадь фигуры ограниченной линиями y=3-4 x+xквадрат y=3-xквадрат
Вычислите площадь фигуры ограниченной линиями y=3-4 x+xквадрат y=3-xквадрат

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Известно что х1 и х2 корни уравнения х^2+7х-11=0. найдите значение выражения 2х1х2-х1-х2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

lenapopovich556510
сергеевич1958
expo3217
Mnatsovna
Irina_Chernyaev532
propercarwashes275
juliat200520
Dmitriy793
vitalis79
vs617
nanasergevn
itartdesignprof
maglevanyycpt
Mexx9050
kengyra