Подробное объяснение: 1) Ищем нули функции: первая скобка равна нулю при х=-2 вторая скобка равна нулю при х=4 2) Рисуем числовую ось и расставляем на ней найденные нули функции - точки -2 и 4 (-2)(4) Точки рисуем с пустыми кружочками ("выколотые"), т.к. неравенство у нас строгое (знак < )
3) Начинаем считать знаки на каждом интервале, начиная слева-направо. Для этого берём любую удобную для подсчёта точку из интервала, подставляем её вместо икс и считаем знак: 1. х=-100 -100+2 <0 знак минус -100-4 <0 знак минус минус*минус=плюс Ставим знак плюс в крайний левый интервал + (-2)(4)
2. аналогично, х=0 0+2 >0 знак плюс 0-4 <0 знак минус плюс*минус=минус + _ (-2)(4)
3. x=100 100+2>0 знак плюс 100-4>0 знак плюс плюс*плюс=плюс + - + (-2)(4)
Итак, знаки на интервалах мы расставили. Смотрим на знак неравенства: < 0 Значит, нам надо взять только те интервалы, где стоят минусы. В данном случае, такой интервал один (-2;4) Это и есть ответ.
Теперь краткая запись решения: (х+2)(х-4)<0 + - + (-2)(4)
x∈(-2;4) ответ: (-2;4)
ikalabuhova
22.11.2021
Решение 1) 2cosx-1 < 0 cosx < 1/2 arccos(1/2) + 2πn < x < 2π - arccos(1/2) + 2πn, n ∈ Z π/3 + 2πn < x < 2π - π/3 + 2πn, n ∈ Z π/3 + 2πn < x < 5π/3 + 2πn, n ∈ Z 2) sin2x - √2/2 < 0 sin2x < √2/2 - π - arcsin(√2/2) + 2πk < 2x < arcsin(√2/2) + 2πk, k ∈ Z - π - π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z - 5π/4 + 2πk < 2x < π/4 + 2πk, k ∈ Z - 5π/8 + πk < x < π/8 + πk, k ∈ Z 3) tgx<1 - π/2 + πn < x < arctg(1) + πn, n ∈ Z - π/2 + πn < x < π/4 + πn, n ∈ Z
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
7. розв'язати графічно систему рівнянь {4х-у = 2 х+2у=5