Сначала докажем равенство треугольников АВС и АEF.
<АВС=<АFE=180(n-2):n=180(6-2):6=120
AB=DC=AF=FE как стороны правильного шестиугольника ⇒ по 1 признаку равенства треугольников имеем:ΔАВС=ΔAEF ⇒ AC=AE
CD=DE как стороны прав. шестиуг-ка
AD - общая сторона для ΔACD и ΔAED ⇒
по трём сторонам ΔACD=ΔAED ⇒<CDE=<ADE=120:2=60
В равнобедр. ΔABC : <BAC=<ACB=(180-120):2=30 <BCD=<ACB+<ACD ⇒
<ACD=120-30=90 ⇒
В ΔАСD : <CAD=180-(90+60)=30
То есть при прямых ВС и АД и секущей АС равны углы АСВ и САД (внутренние накрест лежащие) ⇒ ВС||AD
№11/(1+v2)+1/(v2+v3)+1/(v3+2)=((v3+2)(v2+v3)+(1+v2)(v3+2)+(v3+v2)(1+v2))/((1+v2)(v2+v3)(v3+2))== (v6+3+2v2+2v3+v3+2+v6+2v2+v3+v6+v2+2)/((v2+v3+2+v6)(v3+2))==(3v6+5v2+4v3+7)/(v6+2v2+3+2v3+2v3+4+3v2+2v6)==(3v6+5v2+4v3+7)/(3v6+5v2+4v3+7)=11/(2-v3)-1/(v3-v2)+1/(v2-1)=((v2-1)(v3--v3)(v2-1)+(2-v3)(v3-v2))/((2-v3)(v3-v2)(v2-1))=(v6-2-v3+v2-2v2+2+v6-v3+2v3-2v2-3+v6)/((2v3-2v2-3+v6)(v2-1))==(3v6-3v2-3)/(2v6-2v3-4+2v2-3v2+3+2v3-v6))=3(v6-v2-1)/(v6-v2-1)=3#2я понял запись так : v(7+4v3+v7+4v3)=v(7+v7+8v3)v(8+2v7-v8-2v7)=v(8-v8)
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольный треугольник вписана окружность. найдите сумму катетов, если гипотенуза треугольника равна 16 см, а диаметр окружности равен 2 см
, где a,b - катеты прямоугольного треугольника, а c - гипотенуза.
Диаметр окружности равен двум радиусам. Значит, если диаметр равен двум сантиметрам, тогда радиус равен одному сантиметру. Подставляем значения в формулу, и находим сумму катетов.