Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором . С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения , два произвольных числа, но . Пусть мы имеем функцию , тогда вычисляем значения функции в этих двух точках, имеем и , так вот, если , тогда функция возрастающая, если же , то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1), т.е. функция возрастающая. А вот задание с не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) . Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): , функция возрастает, что и требовалось доказать.
Кашихина
07.01.2021
2сos²x-1+cosx≥0 cosx=a 2a²+a-1≥0 d=1+8=9 a1=(-1-3)/4=-1 a2=(-1+3)/4=1/2 + - + -1 1/2 a≤-1⇒cosx≤-1⇒x=π+2πn a≥1/2⇒cosx≥1/2⇒x∈[-π/3+2πn; π/3+2πn] ответ x=π+2πn и x∈[-π/3+2πn; π/3+2πn]
= [-1;1] (-1/2 cos2x - 1/3 sin3x +x) =
= -1/2 ( cos (2*1) - cos(2*(-1) ) - 1/3 ( sin(3*1) - sin(3*(-1) ) + 1 -(-1) =
= -1/2 ( cos (2) - cos(-2) ) - 1/3 ( sin(3) - sin(-3) ) + 2 =
= -1/2 ( cos (2) - cos(2) ) - 1/3 ( sin(3) + sin(3) ) + 2 =
= -1/2 * 0 - 1/3 * 2sin(3) + 2 =
= 2/3 * ( 3 - sin(3) )