Признак делимости на 11:
Заметим, что 10...0 (в числе четное число нулей) дает остаток 1 при делении на 11: например, 1000000 = 1 + 99 99 99, разность между такой степенью десятки и 1 разбивается на группы 99-ок и поэтому делится на 99 (и, соответственно, на 11).
Если в числе 10...0 нечетное число нулей, то оно будет давать остаток 10 при делении на 11: например, 10000000 = 10 + 99 99 99 0, так же и в любой другой степени, разность между числом и 10 будет содержать какое-то количество групп 99-ок и 0, разность делится на 11.
Осталось расписать число в виде суммы разрядных слагаемых:
и заметить, что эта сумма даёт такой же остаток при делении на 11, что и
В первой скобке стоит разность сумм цифр, стоящих на четных и на нечетных местах, второе слагаемое - делится на 11. Чтобы вся сумма делилась на 11, необходимо и достаточно, чтобы разность сумм цифр, стоящих на четных и на нечетных местах, делилась на 11.
Признак делимости на 13:
Число равно 10A + b, A - число, образованное всеми цифрами кроме последней, b - последняя цифра. Утверждается, что если сложить число десятков A с учетверенным числом единиц 4b, то полученная сумма A + 4b делится на 13 тогда же, когда и исходное число. Это следует из того, что (10A + b) + 3(A + 4b) = 13(A + b); если одно слагаемое делится на 13, то и второе обязано делиться на 13, так как вся сумма делится на 13.
Поделитесь своими знаниями, ответьте на вопрос:
Cos²(45°-a)-cos²-(60°+a)-75°·sin(75°-2a)=sin2a докажите тождество
(cos(45-a) - cos(60+a))*(cos(45-a) + cos(60+a)) - cos75*sin(75-2a) =
2sin(105/2)sin(15/2 + a) * 2cos(105/2)cos(15/2 + a) - cos75*sin(75-2a) =
sin105 * sin(15+2a) - cos75sin(75-2a) = sin(180-75) * sin(90-(75-2a)) - cos75*sin(75-2a) =
sin(75) * cos(75-2a) - cos75*sin(75-2a) = sin(75 - (75-2a)) = sin2a