uglichdeti
?>

Найдите наименьшее натуральное число n такое, что среди чисел от n до n + 40403 (включительно) нет ни одного точного квадрата.

Алгебра

Ответы

autofilters27

Разница квадратов - число нечётное. Даже больше -- разница между квадратами увеличивается на 2:

1^2 - 0^2 = 1\\2^2 - 1^2 = 3\\3^2 - 2^2 = 5\\\dots

Т.е наша задача найти такой x, что разница между его квадратом и квадратом следующего числа была больше 40403, т.е. 40405. Тогда N = x^2 + 1 (так как включая границы).

(x + 1)^2 - x^2 = 40405\\2x + 1 = 40405\\x = 20202 \Rightarrow N = x^2 + 1 = 408120805

katushak29
Эврика! это решение для тех, кто проходил уравнение с пропорцией. суммарно производительность двух насосов после ремонта   стала 2,8 единиц. заполненный бассейн примем как выполненная на 100% работа. первый насос после ремонта стал выдавать 1,2 единиц производительности, значит можно узнать, какой процент от всей работы он выполнял. пропорция: 2,8=100%, 1,2=х%  переведем все цифры в неправильные дроби и оставим их такими до конечного результата  (так не будет бесконечных десятичных дробей) и получим : 28/10=100%,   12/10=х%,     отсюда     х%=120: 28/10=300/7 если первый насос за 6 часов выполнил 300/7% от всей работы, то за сколько времени он выполнит 100% работы? переведем часы в минуты, так как легче минуты сложить в часы, чем высчитывать их по дробям. 6 часов=360 минут снова уравнение с пропорцией: 360 мин=300/7%,     х мин=100%,   отсюда   х (мин)=36000(мин)  : 300/7(%)=252000/300=840(мин) теперь полученные минуты переводим в часы: 840: 60=14(часов) ответ: первый насос после ремонта заполнит бассейн самостоятельно за 14 часов.
volkovaoksana19806037

ответ:172.

1) 5^(x+y)=125, (1)

3^((x-y)²-1)=1;   (2)

5^(x+y)=5³, (1)

3^((x-y)²-1)=3^0; (2)

x+y=3, (1)

(x-y-1)(x-y+1)=0; (2)

y=3-x, (1)

(x-3+x-1)(x-3+x+1)=0; (2)

(2x-4)(2x-2)=0;

2x-4=0;

2x=4;

x1=2

или

2x-2=0;

2x=2;

x2=1.

y1=3-2=1;

y2=3-1=2.

ответ: (2;1), (1;2).

2) 3^x+3^y=12, (1)

6^(x+y)=216; (2)

6^(x+y)=6³;

x+y=3;

y=3-x;

3^x+3^(3-x)=12; (1)

3^(2x)-12*3^x+27=0;

3^x=t;

t²-12t+27=0;

D=144-108=36;

t1=(12-6)/2=3;

t2=(12+6)/2=9;

3^x=3;

x1=1;

3^x=9;

x2=2;

y1=3-1=2;

y2=3-2=1.

ответ: (1;2), (2;1).

3) 4^(x+y)=128, (1)

5^(3x-2y-3)=1; (2)

2^(2(x+y))=2^7, (1)

5^(3x-2y-3)=5^0; (2)

2x+2y=7, (1)

3x-2y-3=0; (2)

2y=7-2x, (1)

3x-7+2x-3=0; (2)

6x=10;

x=10/6=5/3;

y=(7-2x)/2=(7-10/3)/2=11/6.

ответ: (5/3;11/6).

4) 3^(2x-y)=1/81, (1)

3^(x-y+2)=27; (2)

3^(2x-y)=3^(-4), (1)

3^(x-y+2)=3³; (2)

2x-y=-3, (1)

x-y+2=3; (2)

x-y=1;

y=x-1;

2x-x+1=-3; (1)

x=-4;

y=-4-1=-5.

ответ: (-4;-5).

173.

1) 4^(x+y)=16, (1)

4^(x+2y-1)=1; (2)

4^(x+y)=4², (1)

4^(x+2y-1)=4^0; (2)

x+y=2, (1)

x+2y-1=0; (2)

y=2-x; (1)

x+2(2-x)-1=0; (2)

x+4-2x-1=0;

-x=-3;

x=3;

y=2-3=-1.

ответ: (3;-1).

2) 6^(2x-y)=√6, (1)

2^(y-2x)=1/√2; (2)

6^(2x-y)=6^(1/2); (1)

2^(y-2x)=2^(-1/2); (2)

2x-y=1/2, (1)

+

y-2x=-1/2; (2)

0=0

ответ: нет решений.

3) 5^(2x+y)=125, (1)

7^(3x-2y)=7; (2)

5^(2x+y)=5³, (1)

7^(3x-2y)=7^1; (2)

2x+y=3, (1)

3x-2y=1; (2)

y=3-2x; (1)

3x-2(3-2x)=1;

3x-6+4x=1;

7x=7;

x=1;

y=3-2*1=1.

ответ: (1;1).

4) 3^(4x-3y)=27√3, (1)

2^(4y+x)=1/(2√2); (2)

3^(4x-3y)=3^(7/2), (1)

2^(4y+x)= 2^(-3/2); (2)

4x-3y=7/2, (1)

4y+x=-3/2; (2)

x=-3/2-4y,  

4(-3/2-4y)-3y=7/2; (1)

-6-16y-3y=7/2;

-19y=19/2;

y=-1/2;

x=-3/2-4(-1/2)=-3/2+2=1/2.

ответ: (1/2;-1/2).

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите наименьшее натуральное число n такое, что среди чисел от n до n + 40403 (включительно) нет ни одного точного квадрата.
Ваше имя (никнейм)*
Email*
Комментарий*