Пусть на расстояни х км от пункта А состоялась встреча - єто так же расстояние которое проехал мотоциклист за 1 ч 20 мин=80 мин, поєтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180 8*(80/x-1)=18*(80/(80-x)-1) 4*(80-x)/x=9*(80-80+x)/(80-x) 4*(80-x)/x=9x/(80-x) 4*(80-x)^2=9x^2 4*(6400-160x+x^2)=9x^2 25600-640x+4x^2=9x^2 5x^2+640x-25600=0 x^2+128x-5120=0 D=36864=192^2x х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным) x2=(-128+192)/2=32 х=32 ответ: 32 км
Melsan19914239
03.09.2021
1) Если первое число больше второго или равно ему и к первому прибавим еще, то оно станет еще больше, соответственно неравенство m+1>n верно.
2) Рассмотрим вариант а) когда m>3, тогда разность 3-m будет<0, а разность 3-n будет либо равна 3-m (при m=n), либо больше разности 3-m (при m>n), то есть неравенство выполняться не будет Рассмотрим вариант б) когда m≤3 тогда 3-m≤3-n (т.к. если от константы отнять большее число, то разность будет меньше, чем от константы отнять меньшее число)
Подведем итог - второе неравенство неверно при любых значениях m и n
3) Если от меньшего (или одинакового, если m=n) отнять еще, то оно станет еще меньше, то есть неравенство верно.
4) Если мы поменяем знак у чисел m и n, то будет выполняться равенство -m≤-n. При отнимании от обеих частей данного неравенства одинакового числа знак равенства не изменится, т.е. неравенство верно
1) x2(это тоже)-4x=0 ; x(x-4)=0 ; x=0 x=4
2)n2-11n+10=0 ; n(n-1)-10(n-1)=0 ; (n-1)(n-10) ; n=1 ; n=10
3)19x-14-6x(2-это в квадрате) ; 6x2-7x-12x+14=0 ; x(6x-7)-2(6x-7)=0 ; (6x-7)(x-2)=0 ; x=7/6 ; x=2