1. 25/36*x^4+5*x^2+9
2. 1/64*x^2-x^2+16*n^2
3. 4/49*m^2+4*m*n^3+49*n^6
4. 1/36*p^6+n*p^3+9*n^2
5. 9/25*c^3+6*c^3*t^4+25*t^8
6. x^4*y^2-2*x^2*y*k*n^2+k^2*n^4
Объяснение:
Следуя формулам (a+b)^2=a^2+2*a*b+b^2
(a-b)^2=a^2-2*a*b+b^2
1. (5/6x^2+3)^2=(5^2)/(6^2)x^4+2*3*5/6x^2+3^2=25/36 x^4+5x^2+9
2. (1/8x^2-4n)^2=1/64x^4-2*4*1/8 x^2+(4n)^2=1/64*x^2-x^2+16n^2
3. (2/7m+7n^3)^2=4/49 m^2+2*2/7*7 *m*n^3+49n^6= 4/49*m^2+4*m*n^3+49*n^6
4. (1/6 p^3+3n)^2=1/36 p^6+2*1/6*3*p^3*n+9n^2=1/36*p^6+n*p^3+9*n^2
5. (3/5 c^3+5t^4)^2=9/25*c^6+2*5t^4*3/5*c^3+25*t^8= 9/25*c^3+6*c^3*t^4+25*t^8
6. (x^2y-kn^2)^2=x^4*y^2-2*x^2*y*k*n^2+k^2*n^4
Объяснение:
1. 3(x - 2) = x + 2
3x - 6 = x + 2
3x - x = 2 + 6
2x = 8
x = 4
2. 5 - 2(x - 1) = 4 - x
5 - 2x - 2 = 4 - x
-2x + x = 4 -5 + 2
-x = 1
x = -1
3. (7x + 1) - (9x +3) = 5
7x + 1 - 9x - 3 = 5
7x - 9x = 5 - 1 + 3
-2x = 7
x = -3,5
4. 3,4 + 2y = 7(y - 2,3)
3,4 + 2y = 7y - 16,1
2y - 7y = -16,1 - 3,4
-5y = -19,5
y = 3,9
5. 0,2(7 - 2y) = 2,3 - 0,3(y - 6)
1,4 - 0,4y = 2,3 - 0,3y + 1,8
- 0,4y + 0,3y = 2,3 + 1,8 - 1,4
-0,1y = 2,7
y = -27
6. 2/3(1/3x - 1/2) = 4x + 2 1/2
2/9x - 1/3 = 4x + 5/2
2/9x - 4x = 5/2 + 1/3
-34/9 x = 17/6
x = -3/4
Поделитесь своими знаниями, ответьте на вопрос:
Принадлежат ли точки а (-0, 1; 10), в(-0, 2; -5), с(4; 0, 25) графику этой функции y=1/x? какому числовому промежутку принадлежат значения у, если x € [3; 5]?
точка В принадлежит
точка С принадлежит.
у принадлежит [1/5;1/3]