uglichdeti
?>

У-4=х 2х+у=28 решите систему уравнений методом подставновки

Алгебра

Ответы

ИванМолчанов
Решение задания смотри на фотографии
У-4=х 2х+у=28 решите систему уравнений методом подставновки
o-lala88387

Найдем сначала уравнение секущей:

Она проходит через две точки:х1=-1, у1 = 2*(-1)^2 = 2

  и х2 = 2, у2 = 2*2^2 = 8

Ищем уравнение секущей в виде: y=kx+b

Подставим сюда две наши точки и решим систему, найдем k:

-k+b=2

2k+b=8   Вычтем из второго первое: 3k = 6,   k= 2.

Наша искомая касательная должна быть параллельна секущей, значит имее такой же угловой коэффициент. k=2

Найдем точку касания, приравняв производную нашей ф-ии двум:

Y' = 4x = 2

x = 1/2

Уравнение касательной к ф-ии в т.х0:

у = у(х0) + y'(x0)(x-x0)

Унас х0 = 1/2, у(1/2) = 2*(1/4) = 1/2, y'(1/2)= 2.

Тогда получим:

у = 1/2  +  2(х - 1/2)

у = 2х -0,5   - искомое уравнение касательной.

annatarabaeva863
Вспоминает теорему о 3 перпендикулярах и строим такую картинку. Пусть у нас прямые АD и АС лежат в 1 плоскости и взаимно перпендикулярны в ней друг другу, а прямая АВ лежит в плоскости, перпендикулярной плоскости АСD, таким образом, она перпендикулярна любой прямой, лежащей в этой плоскости. То есть мы построили картинку, где выполняется это условие. Теперь ∆ АСD, ∆ABC и ∆ ADB прямоугольные, поэтому к ним применима теорема Пифагора (все нахождения сторон строго с её прямой угол напротив стороны, запись которой не содержит "А", то есть (соответственно) DC, BC, DB. Из ∆ ADB находим АВ² = DB² - AD² = c² - m². B ∆ АВС находим АС² = ВС² - АВ² = а² - (с² - m²) = a² - c² + m². Тогда в ∆ ADC находим DC² = AD² + AC² = m² + a² - c² + m² = a² - c² + 2m². Тогда АС = +√(а² - с² + 2m²) (так как длина отрезка строго больше 0). ответ: АС = √(а² - с² +2m²).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

У-4=х 2х+у=28 решите систему уравнений методом подставновки
Ваше имя (никнейм)*
Email*
Комментарий*