Это обычные квадратные уравнения, вида ax^2+bx+c=0 Решаются легко, находишь дискриминант , потом уже x 1) x^2-14x+40=0 Здесь четный b D1=(b/2)^2-ac D1=(-14/2)^2-40=9 x1,2=-b/2+-корень из D1 x1=14/2+3=10 x2=14/2-3=4 ответ 10 и 4 б)3y^2-13y+4=0 Здесь уже b нечетный, тут другая формула D=b^2-4ac=121 y1,2= -b+- корень из D и все все делим на 2a . y1=(13+корень из 121)/6 =4 y2=(13-корень из 121)/6=1/3 ответ : 4 и 1/3 в)12m^2 + m-6=0 D формула такая же как в Б. D=289 m1, m2 формула такая же как в б m1,m2=(-1+- корень из 289)/24 m1=-3/4 m2=2/3 ответ: -3/4 , 2/3
rynaodal
29.10.2020
1) 25 + x/2 = x x/2 = 25 x = 50 кг
2) Система { 0,6x = 0,45y { x + y = 210 1 уравнение умножаем на 100 и делим на 15 { 4x = 3y { x + y = 210 Замена x + 4x/3 = 210 7x/3 = 210 7x = 630 x = 90, y = 4x/3 = 4*90/3 = 4*30 = 120
3) Скорость катера по течению 16+x км/ч, против течения 16-x км/ч. По течению катер плыл 1,6 часа, а против течения 2,5 часа, и проплыл на 6,2 км больше. 1,6(16 + x) + 6,2 = 2,5(16 - x) Умножаем все на 10 16(16 + x) + 62 = 25(16 - x) 256 + 16x + 62 = 400 - 25x 16x + 25x = 400 - 256 - 62 41x = 82 x = 2 км/час
4) За 2 часа велосипедист уедет на 14*2 = 28 км от коттеджа. И в это время выходит пешеход. Скорость удаления велосипедиста от пешехода равна сумме их скоростей, то есть 14 + 4 = 18 км/час. Через t часов после выхода пешехода расстояние будет 73 км. 28 + 18t = 73 18t = 73 - 28 = 45 t = 45/18 = 5/2 = 2,5 часа. Через 2,5 часа после выхода из коттеджа пешеход будет на расстоянии 73 км от велосипедиста. А от коттеджа пешеход будет на расстоянии S(п) = 2,5*4 = 10 км. А велосипедист в это время будет от коттеджа на расстоянии S(в) = 28 + 2,5*14 = 28 + 35 = 63 км.
ответ