Х страниц в час печатала машинистка (х-3) х страниц в час должна была печатать машинистка
180/х час - за это время она выполнила всю работу 180/(х-3) час - за это время она должна была выполнить всю работу
По условию она выполнила всю работу на 5 час раньше срока, т.е. 180/(х-3) > 180/х на 5
Получаем уравнение: 180/(х-3) - 180/х = 5
ОДЗ: х>0; х≠3
180х - 180·(х-3) = 5х·(х-3) 180х - 180х + 540 = 5х² - 15х 5х² - 15х - 540 = 0 Делим обе части уравнения на 5 и получаем:
х² - 3х - 108 = 0
D = b²-4ac D = 9 - 4·1·(-108) = 9 + 432 = 441 √D = √441 = 21
х₁ = (3-21)/2 = -18/2 = - 9 посторонний корень, т.к. отрицательный х₂ = (3 + 21)/2 = 24/2 = 12 ответ: 12 страниц в час печатала машинистка
narkimry134
17.08.2022
Сначала просто приведем подобные: 2*sin2x+1,5sin2x-3cos2x=1 3,5sin2x-3cos2x=1 Теперь распишем синус и косинус двойного угла по известным правилам: sin2x=2sinx*cosx и cos2x=cos²x-sin²x. Получим: 3,5*(2*sinx*cosx)-3*(cos²x-sin²x)=1 7*sinx*cosx-3*cos²x+3*sin²x=1 Далее используем известное тригонометрическое тождество: sin²x+cos²x=1 и подставим в правую часть равенства вместо 1 это выражение, получим: 7*cosx*cosx-3*cos²x+3*sin²x=sin²x+cos²x перенесем все слагаемые в левую часть равенства и получим: 7*cosx*cosx-3*cos²x+3*sin²x-sin²x-cos²x=0 Приведем подобные: 2*sin²x+7*sinx*cosx-4*cos²x=0 Данное равенство очень похоже на квадратное уравнение, но мешает то, что есть два неизвестных: синус и косинус. Разделим обе части равенства на cos²x (обязательно учитывая в ответе условие cos²x≠0): 2*(sin²x/cos²x)+7*sinx*cosx/cos²x-4*cos²x/cos²x=0 (в правой части был 0, а это число при делении на любое другое число не изменится). Упростим запись выражения как tgx=sinx/cosx 2*tg²x+7*tgx-4=0 Теперь выполним временную замену t=tgx и получим квадратное уравнение: 2*t²+7*t-4=0 D=7²-4*2*(-4)=49+32=81 t₁=(-7+√81)/(2*2)=(-7+9)/4=2/4=1/2 t₂=(-7-√81)/(2*2)=(-7-9)/4=-16/4=-4 Итак, получим два уравнения вида: tgx=1/2 tgx=-4 Тангенс имеет период, равный π, поэтому получим: x=arctg(1/2)+kπ, k∈N x=arctg(-4)+kπ, k∈N Решение не противоречит условию cos²x≠0 или x≠π/2+kπ, k∈N Поэтому два полученных значения x можно считать решением заданного уравнения.
Зачеркнутое это сокращенные числа