ИП_Рамис873
?>

Раскройте скобки и подобные слагаемые (4-а)*(а+4) + (а-3)2

Алгебра

Ответы

Хачатурович978

(4-а)*(а+4) + (а-3)2 = 4a+16-a²-4a + 2a-6 = a²+2a+10

Подобные слагаемые:

1) 4a; -4a; 2a

2) a²

3) 16; -6

silantyevevgeny
(х+5)(х-7)=-35x^2 -2x =0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-2)2 - 4·1·0 = 4 - 0 = 4Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 =   2 - √4 2·1  =   2 - 2 2  =   0 2  = 0x2 =   2 + √4 2·1  =   2 + 2 2  =   4 2  = 2
x2 - 13x + 22 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-13)2 - 4·1·22 = 169 - 88 = 81Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 =   13 - √81 2·1  =   13 - 9 2  =   4 2  = 2x2 =   13 + √81 2·1  =   13 + 9 2  =   22 2  = 11
5x2 + 8x - 4 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = 82 - 4·5·(-4) = 64 + 80 = 144Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 =   -8 - √144 2·5  =   -8 - 12 10  =   -20 10  = -2x2 =   -8 + √144 2·5  =   -8 + 12 10  =   4 10  = 0.4
(х-4)^ 2=0x^2 - 8x + 16 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-8)2 - 4·1·16 = 64 - 64 = 0Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:x =   8 2·1  = 4
x2 + 2x + 3 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = 22 - 4·1·3 = 4 - 12 = -8Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
(х-8)(х+3)=0x^2 -5x -24=0x2 - 5x - 24 = 0Найдем дискриминант квадратного уравнения:D = b2 - 4ac = (-5)2 - 4·1·(-24) = 25 + 96 = 121Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:x1 =   5 - √121 2·1  =   5 - 11 2  =   -6 2  = -3x2 =   5 + √121 2·1  =   5 + 11 2  =   16 2  = 8
Aleksandr556

x² + (m - 1)x + m² - 1,5 = 0

По теореме Виета :

x₁ + x₂ = - (m - 1)

x₁ * x₂ = m² - 1,5

x₁² + x₂² = (x₁ + x₂)² - 2x₁ * x₂ = (- (m - 1))² - 2 * (m² - 1,5) = m² - 2m + 1 - 2m² + 3 = - m² - 2m + 4

Найдём производную полученного выражения :

(- m² - 2m + 4)'= -2m - 2

Приравняем к нулю и найдём нули производной :

- 2m - 2 = 0

m + 1 = 0

m = - 1

Отметим полученное число на числовой прямой и найдём знаки производной на промежутках, на которые разбивается числовая прямая :

            +                                -

- 1

           ↑               max              ↓

ответ : при m = - 1 сумма корней уравнения наибольшая

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Раскройте скобки и подобные слагаемые (4-а)*(а+4) + (а-3)2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Grigorev_Nikita794
mgrunova3966
volna22051964
(a-3)×(a+4)>(a+5)×(a-4)
Sakmarov
vdnh451
vyborovvs
Koshovkina1721
Исмагилова_Саният
5х-10х=0 Решите уравнение
Savva1779
gabramova
antrotip
nchorich55
alapay
Irina321t
Anshel2018534