Борисович409
?>

Значение выражения 3+b/24 равно нулю, если b=

Алгебра

Ответы

Егорова
-3.
Джамал1009

-72

Объяснение:

Vyacheslavovich-Gubanov

f(x)=\left\{\begin{array}{l}\Big(\dfrac{1}{2}\Big)^{x}\ ,\ \ x\leq -1\ ,\\-x\ ,\ \ -1

Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х= -1, х=1 , х=2 .

a)\ \ \lim\limits _{x \to -1-0}f(x)=\lim\limits _{x \to -1-0}\Big(\dfrac{1}{2}\Big)^{x}=2\ \ ,\ \ \ \lim\limits _{x \to -1+0}f(x)=\lim\limits _{x \to -1+0}(-x)=1\\\\\lim\limits _{x \to -1-0}f(x)\ne \lim\limits _{x \to -1+0}f(x)\ \ \Rightarrow

При х= -1 функция имеет разрыв 1 рода .

b)\ \ \lim\limits _{x \to 1-0}f(x)=\lim\limits _{x \to 1-0}(-x)=-1\ ,\ \ \lim\limits _{x \to 1+0}f(x)=\lim\limits _{x \to 1+0}(x^2-2)=-1\\\\f(1)=(-x)\Big|_{x=1}-1\\\\\lim\limits _{x \to 1-0}f(x)=\lim\limits _{x \to 1+0}f(x)=f(2)=-1\ \ \ \Rightarrow

При х=1 функция непрерывна.

c)\ \ \lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2-0}(x^2-2)=4-2=2\\\\\lim\limits _{x \to 2+0}f(x)=\lim\limits _{x \to 2+0}7^{\frac{2x}{x-2}}=7^{+\infty }=+\infty \ \ \ \Rightarrow

При х=5 функция имеет разрыв 2 рода .

График функции нарисован сплошными линиями.

На 1 рисунке нет чертежа функции   при х>2  , для которого прямая х=2 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>2 сплошной линией..


Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
gymnazium

f(x)=\left\{\begin{array}{l}2^{x}\ ,\ \ x\leq 0\ ,\\-x^2\ ,\ \ 0

Исследуем поведение функции вблизи точек, где её аналитическое выражение меняется . Найдём левосторонние и правосторонние пределы в точках х=0, х=2 , х=5 .

a)\ \ \lim\limits _{x \to 0-0}f(x)=\lim\limits _{x \to 0-0}2^{x}=1\ \ ,\ \ \ \lim\limits _{x \to 0+0}f(x)=\lim\limits _{x \to 0+0}(-x^2)=0\\\\\lim\limits _{x \to 0-0}f(x)\ne \lim\limits _{x \to 0+0}f(x)\ \ \Rightarrow

При х=0 функция имеет разрыв 1 рода .

b)\ \ \lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2-0}(-x^2)=-4\ ,\ \ \lim\limits _{x \to 2+0}f(x)=\lim\limits _{x \to 2+0}(x-6)=-4\\\\f(2)=(-x^2)\Big|_{x=2}-4\\\\\lim\limits _{x \to 2-0}f(x)=\lim\limits _{x \to 2+0}f(x)=f(2)=-4\ \ \ \Rightarrow

При х=2 функция непрерывна.

c)\ \ \lim\limits _{x \to 5-0}f(x)=\lim\limits _{x \to 5-0}(x-6)=-1\\\\\lim\limits _{x \to 5+0}f(x)=\lim\limits _{x \to 5+0}3^{\frac{4x}{x-5}}=3^{+\infty }=+\infty \ \ \ \Rightarrow

При х=5 функция имеет разрыв 2 рода .

График функции нарисован сплошной линией.

На 1 рисунке нет чертежа функции  y=3^{\frac{4x}{x-5}}   при х>5  , для которого прямая х=5 является асимптотой , так как он не умещается при данном масштабе. Этот график полностью начерчен отдельно на 2 рисунке, чтобы вы понимали, как он расположен. Но для вашей функции берётся только та часть графика, которая нарисована для х>5 .


Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.
Задана функция f(x). Найти точки разрыва функции, если они существуют. Сделать чертеж.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Значение выражения 3+b/24 равно нулю, если b=
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

smint056950
syana80
bestform
Александра-Андрей909
Yekaterina_Popova1413
kristal1
perova-s200
vodolaz8384
Rufilya-Belov
annanechaeva567
novkatrina
Pastushenkoen
pivenraisa
yakovlevasvetlanalvovna209
Vlad Petr531