Подставляем n = 0 - неравенство не выполнено. n = 1 - неравенство не выполнено. Следовательно, при n ≥ 0 решений не будет, т.к. (-1)^n + 6n - функция возрастающая.
Пусть n = -1, тогда выражение Так как 3.14 < π < 3.15, то
-22.05 < -7π < -21.98. Очевидно, оно попадает на промежуток (-24; -18). Значит, при n = -1 решение есть на данном отрезке. Подставим n = -1 в серию корней:
Такими же рассуждениями приходим к тому, что n ≤ -2 так же не являются решениями.
Теперь рассмотрим вторую серию корней:
Тут совсем все просто: при m = 0, очевидно, неравенство не выполнено. При m = 1 так же. Так как выражение при возрастании m увеличивается, то и m ≥ 2 также не подходят.
Пусть m = -1, тогда:
Очевидно, что это так. Подставляя m = -2 понимаем, что число меньше -4.
Вопросы ниже в комменты.
ответ:
Поделитесь своими знаниями, ответьте на вопрос:
Используя формулы, вычислите приближенные значения выраженийа)под корнем 1, 003; б)под корнем 1, 004; в) под корнем 4, 008.
Предлагаю для начала решить уравнение:
(3x² + 2x - 1)/(x + 1) = 5
ОДЗ: x + 1 ≠ 0
x ≠ -1
(3x² + 2x - 1)/(x + 1) * (x + 1) = 5 * (x + 1)
3x² + 2x - 1 = 5 * (x + 1)
3x² + 2x - 1 = 5x + 5
3x² + 2x - 5x - 1 - 5 = 0
3x² - 3x - 6 = 0
D = (-3)² - 4 * 3 * (-6) = 9 + 72 = 81
x₁,₂ = (3 ± √81)/(2 * 3) = (3 ± 9)/6
x₁ = (3 + 9)/6 = 12/6 = 2
x₂ = (3-9)/6 = -6/6 = -1 (посторонний корень, не соответствует ОДЗ).
ОТВЕТ: x = 2.
Отвечаю на Ваш вопрос.
В дробно-рациональных уравнениях (подобных данному) нужно избавляться от знаменателя. Он никуда автоматически не пропадает. Просто все уравнение имеют такую особенность, что если умножить обе чести уравнения на одно и то же число (или выражение), то корни уравнения остаются прежними. В таком случае чтобы "исчез" знаменатель (то есть чтобы от него избавиться) обе части уравнения умножают на общий знаменатель (вторая строчка решения, не учитывая ОДЗ).