Ekaterina1654
?>

Выразить n из формулы

Алгебра

Ответы

axo4937

a = \frac{n-2}{n} \cdot180\\a=(1-\frac{2}{n})\cdot180\\a=180-\frac{360}{n}\\\frac{360}{n}=180-a\\n=\frac{360}{180-a}

Svetlana290419

Найдем сначала уравнение секущей:

Она проходит через две точки:х1=-1, у1 = 2*(-1)^2 = 2

  и х2 = 2, у2 = 2*2^2 = 8

Ищем уравнение секущей в виде: y=kx+b

Подставим сюда две наши точки и решим систему, найдем k:

-k+b=2

2k+b=8   Вычтем из второго первое: 3k = 6,   k= 2.

Наша искомая касательная должна быть параллельна секущей, значит имее такой же угловой коэффициент. k=2

Найдем точку касания, приравняв производную нашей ф-ии двум:

Y' = 4x = 2

x = 1/2

Уравнение касательной к ф-ии в т.х0:

у = у(х0) + y'(x0)(x-x0)

Унас х0 = 1/2, у(1/2) = 2*(1/4) = 1/2, y'(1/2)= 2.

Тогда получим:

у = 1/2  +  2(х - 1/2)

у = 2х -0,5   - искомое уравнение касательной.

PivovarovaIlina1437

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выразить n из формулы
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kolyabelousow4059
buleckovd8724
vikka30
iordanekaterina
betepah
Makarov
valera850515
pifpaf85
samogon-mozhaisk
makashi28
anusha33325
orion-inginiring7807
Семеновна-Павел
Анатолий
Ainura Pokhomova