ale99791308
?>

Найдите пятую степень числа, если его куб равен на:

Алгебра

Ответы

katrin819

Ну \frac{x^n}{n} указывает на то, что надо бы производную брать для исследования этой функции, ибо она красивая получается.

f'(x)=x^4-x^3+x^2+x-2;

Далее, для исследования исходной функции на возрастание/убывание необходимо найти нули производной, то есть f'(x)=0;

x^4-x^3+x^2+x-2=0;

Сумма коэффициентов в уравнении равно 0, значит, x=1 - корень

Попробуем разложить выражение, заранее зная корень.

x^4-x^3+x^2+x-2=x^4-x^3+x^2-x+2x-2=\\ =x^3(x-1)+x(x-1)+2(x-1)=(x-1)(x^3+x+2)

Теперь нужно проанализировать правую скобку x^3+x+2=0;

Сумма коэффициентов при четных (2) и нечетных (1+1=2) степенях равна, значит, x=-1 - корень. x^3+x+2=x^3+x^2-x^2-x+2x+2=x^2(x+1)-x(x+1)+2(x+1)=\\ =(x+1)(x^2-x+2)

Осталась последняя скобка в разложении, найдем дискриминант уравнения

x^2-x+2=0; D=(-1)^2-4*1*2=1-8=-70 при любых х.

Итоговое разложение f'(x)=(x-1)(x+1)(x^2-x+2)

Нули производной известны, это x=\pm1

Везде при х коэффициент равен 1 (у правой скобки нет нулей, её мы считаем просто каким-то положительным числом), значит, в самом правом промежутке "+", а дальше чередование.

Имеем при \boxed {x \in (-\infty;-1)\cup(1;+\infty)} возрастание f(x), а при \boxed {x\in(-1;1)} убывание f(x),

x=-1 - точка локального максимума,

x=1 - точка локального минимума.

Убывание должно быть на интервале (a; a+\frac{1}{3}), поэтому если параметр захватит точки экстремума - ничего страшного, интервал как раз не включает концы.

С одной стороны, a\geq -1, как раз при a=-1 убывание на (-1;-\frac{2}{3}) выполняется.

С другой стороны, a+\frac{1}{3}\leq 1; a\leq \frac{2}{3}, при a=-\frac{2}{3} убывание продолжается вплоть до x=1, не включая эту точку.

Объединяя наши условия, получаем $1\leq a\leq \frac{2}{3} \Rightarrow a\in[1;\frac{2}{3}]

ответ: \boxed {a\in[1;\frac{2}{3}]}

insan10

Рассмотрим несколько случаем. На месте четной цифры мы будем писать Ч, на месте нечетной - Н. Тот факт, что число нечетное, означает, что последняя цифра у числа нечетная.

1) Число имеет вид ЧЧН. Поскольку на первом месте не может стоять 0, на первое место претендуют 3 цифры - 2, 4, 6. На второе место претендуют 4 цифры  - 0, 2, 4, 6 (а если цифры не должны повторяться, то 3 цифры). На третье место претендуют  4 цифры - 3, 5, 7, 9.

Всего получается 3·4·4=48 чисел (при второй интерпретации условия 3·3·4=36 чисел).

2) ЧНН. Здесь аналогично получается 3·4·4=48 чисел (или 3·4·3=36).

3) НЧН. Здесь 4·4·4=64 чисел (или 4·4·3=48).

4) ННН. Здесь 4·4·4=64 числа (или 4·3·2=24)

Суммарно получаем 48+48+64+64=224 чисел - если повторения цифр допускаются (или 36+36+48+24= 144 чисел если все цифры должны быть разные).

Замечание. Если цифры могут совпадать, задачу можно сделать проще . На первом место может стоять любая из цифр, кроме 0 - всего 7 вариантов. На втором месте может стоять любая цифра - всего 8 вариантов. На третьем месте может стоять любая из нечетная цифра - 4 варианта. Всего получаем 7·8·4=224 числа.

ответ: 224 чисел, в которых возможно совпадение цифр, и 144 числа, в которых все цифры разные.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите пятую степень числа, если его куб равен на:
Ваше имя (никнейм)*
Email*
Комментарий*