мурувватовна викторович569
?>

Выражение: а/a^2-10a+25 + a+2/25-a^2 нужно удалили)

Алгебра

Ответы

dima8585

Приведение дробей к общему знаменателю.


Выражение: а/a^2-10a+25 + a+2/25-a^2 нужно удалили)
Выражение: а/a^2-10a+25 + a+2/25-a^2 нужно удалили)
Stepanovich_Makarov
 а) (а – 2)( а + 2) – 2а(5 – а) =а^2-4-10a+2a^2=6a^2-10a-4
 б) (у – 9)2 – 3у(у + 1) =y^2-18y+81-3y^2-3y=-2y^2-21y+81
 в) 3(х – 4) 2 – 3х2 =3(x^2-8x+16)-3x^2=3x^2-24x+48-3x^2=48-24x
2. Разложите на множители:
 а) 25х – х3=x(25-x^2)=x(5-x)(5+x) б) 2х2 – 20х + 50 =2(x^2-10x+25)=2(x-5)^2=2(x-5)(x+5)
 3. Найдите значение выражения а2 – 4bс=36-4*(-11)*(-10)=36-440=-404
 а) 452 б) -202 в) -404 г) 476 
4. Упростите выражение:
 (с2 – b)2 – (с2 - 1)(с2 + 1) + 2bс2 =c^4-4bc^2+b^2-c^4+1=-4bc^2+b^2+1
5. Докажите тождество:
(а + b)2 – (а – b)2 = 4аba^2+2ab+b^2-a^2+2ab-b^2=2a+2ab=4ab 
Староческуль-Станиславовна
x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Убедимся, что данное дифференциальное уравнение является однородным. 

То есть, воспользуемся условием однородности
\lambda x\cdot y'=\lambda x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+\lambda y\\ \\ \lambda x\cdot y'=\lambda(x \cdot e^\big{ \frac{\lambda y}{\lambda x} }+y)\\ \\ x\cdot y'=x \cdot e^\big{ \frac{y}{x} }+y
Итак, данное дифференциальное уравнение является однородным.

Однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными относительно новой неизвестной функции u=u(x) с замены:
  y=ux, тогда y'=u'x+u
x\cdot (u'x+u)=x\cdot e^\big{ \frac{ux}{x} }+ux\\ \\ x\cdot (u'x+u)=x(e^u+u)\\ \\ u'x+u=e^u+u

u'x=e^u
По определению дифференциала, получаем
\dfrac{du}{dx} \cdot x=e^u - уравнение с разделяющимися переменными.
Разделим переменные.
\dfrac{du}{e^u} = \dfrac{dx}{x} - уравнение с разделёнными переменными.

Проинтегрируем обе части уравнения
\displaystyle \int\limits { \frac{du}{e^u} } \,=\int\limits { \frac{dx}{x} } \\ \\ \int\limits {e^{-u}} \, du=\int\limits { \frac{1}{x} } \, dx
-e^{-u}=\ln |x|+C - общий интеграл новой функции.

Таким образом, определив функцию u из решения уравнения с разделяющимися переменными, чтобы записать решение исходного однородного уравнения, остаётся выполнить обратную замену: u= \dfrac{y}{x}

То есть, 

-e^\big{-\frac{y}{x} }=\ln |x|+C - общий интеграл исходного уравнения.
Остаётся определить значение произвольной постоянной C. Подставим в общий интеграл начальное условие:
-e^\big{- \frac{0}{1} }=\ln |1|+C\\ C=-1

-e^\big{-\frac{y}{x} }=\ln |x|-1 - частный интеграл, также является решением данного дифференциального уравнения.


ответ: -e^\big{-\frac{y}{x} }=\ln |x|-1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выражение: а/a^2-10a+25 + a+2/25-a^2 нужно удалили)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Альберт Татьяна
kronid12
windless-el
sargisyan
Stenenko
martinson1136
Irina_Chernyaev532
kotikdmytriy11
iraimironova
bulin2001
houseoftorture138
Васильевичь Виктория457
mv7095
sov0606332
Тинчурина1528