evageniy79
?>

Найти сумму корней уравнения. |x+4|+|x−3|=10

Алгебра

Ответы

matveevaev81

x+4+x+3=10

(-x+4)+x-3=10

x+4-(x-3)=10

-(x+4)-(x+3)=10

x1=4,5; x2=5,5

irinalav2705745
First, we'll try to plug in the value:
#lim_{x to -oo}x+sqrt(x^2+2x) = -oo + sqrt(oo-oo)#
We're already encountering a problem: it is simply not allowed to have #oo-oo#, it's like dividing by zero.
We need to try a different approach.
Whenever I see this kind of limit, I try to use a trick:
#lim_{x to -oo}x+sqrt(x^2+2x)#
#= lim_{x to -oo}x+sqrt(x^2+2x)*(x-sqrt(x^2+2x))/(x-sqrt(x^2+2x))#
These are the same becaus the factor we're multiplying with is essentially #1#.
Why are we doing this? Because there exists a formula which says: #(a-b)(a+b) = a^2-b^2#
In this case #a = x# and #b = sqrt(x^2+2x)#
Let's apply this formula:
#lim_{x to -oo}(x^2-(sqrt(x^2+2x))^2)/(x-sqrt(x^2+2x))#
#= lim_{x to -oo}(x^2-x^2-2x)/(x-sqrt(x^2+2x))#
#= lim_{x to -oo}(-2x)/(x-sqrt(x^2+2x))#
Now we're going to use another trick. We'r going to use this one, because we want to get the #x^2# out of the square root:
#lim_{x to -oo}(-2x)/(x-sqrt(x^2(1+2/x))#
If you look carefully, you see it's the same thing.
Now, you might say that #sqrt(x^2) = x#, but you have to remember that #x# is a negative number. Because we're taking the positive square root, #sqrt(x^2) = -x# in this case.
#= lim_{x to -oo}(-2x)/(x+xsqrt(1+2/x))#
#= lim_{x to -oo}(-2x)/(x(1+sqrt(1+2/x)))#
We can cancel the #x#:
#= lim_{x to -oo}(-2)/(1+sqrt(1+2/x))#
And now, we can finally plug in the value:
#= -2/(1+sqrt(1+2/-oo))#
A number divided by infinity, is always #0#:
#= -2/(1+sqrt(1+0)) = -2/(1+1) = -2/2 = -1#
This is the final answer.
Hope it helps.
Вакуленко
1- Найти такое положительное число m чтобы данное выражение было квадратом суммы или разности :
1) x² - 6x + m =  x² - 2 * 3 * x + 9 = (х - 3)², m = 9    
2) x² + 16x + m =   x² + 2 * 8 * x + 64 =  (x + 8)², m = 64
  3) x² - mx + 9  = x² - 2 * 3 * x + 9  = (x - 3)², m = 6

2.  Решить уравнение
1) x² - 3x - 10 = 0
а = 1;  b = -3; c = -10
D = b² - 4ac = (-3)² - 4 * 1 * (-10) = 9 + 40 = 49

x1 = - b  + √D    =  - ( - 3) + √49    =   3 +  7   = 5
             2a                   2 * 1                  2

x2 = - b  - √D    =  - ( - 3) - √49    =   3 -  7   = -2
             2a                   2 * 1                2

ответ: -2; 5

 2) 5x² - 7x - 6 = 0
а = 5;  b = -7; c = -6
D = b² - 4ac = (-7)² - 4 * 5 * (-6) = 49 + 120 = 169

x1 = - b  + √D    =  - ( - 7) + √149    =    7 +  13   = 2
             2a                   2 * 5                     10

x2 = - b  - √D    =  - ( - 7) - √149    =    7 -  13   = 0,6
             2a                   2 * 5                    10

ответ: 0,6; 2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти сумму корней уравнения. |x+4|+|x−3|=10
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

moscow053988
yorestov
waspmoto6188
Vik1744184
Елена_Кошевой
IP1379
timsch12
tanu0618
petrakovao
Дмитрий_Евлампиев518
Найдите значение выражения (3х+1)(5х-6)
kondrashovalf6404
zotovinbox468
satinvova
boykovandrew6663
zakupka-marion