predatorfishing608
?>

Решить методом постановки систему уравнений ​

Алгебра

Ответы

bessalaias

На фотографиях решение


Решить методом постановки систему уравнений ​
Решить методом постановки систему уравнений ​
sergeykvik13
1) 0,5(2y-1) - (0.5-0.2y)+1=0
1y-0.5-0.5+0.2y+1=0
1.2y=0
y=0
ответ: 0

2) (x² +3x+2)(x² +3x+4)=8
(x² +3x+2)(x² +3x+2+2)=8

y=x² +3x+2
y(y+2)=8
y² +2y-8=0
D=4+32=36
y₁=(-2-6)/2= -4
y₂=(-2+6)/2=2

При у= -4
x² +3x+2= -4
x² +3x+2+4=0
x² +3x+6=0
D=9-24<0
нет решений.

При у=2
x² +3x+2=2
x² +3x+2-2=0
x² +3x=0
x(x+3)=0
x=0       x+3=0
             x= -3
ответ: -3;  0.

3) (x² -2x-3)(4-x² +2x)= -2
(x² -2x-3)*(-(x² -2x-4))= -2
(x² -2x-3)(x² -2x-3-1)=2

y=x² -2x-3
y(y-1)=2
y² -y-2=0
D=1+8=9
y₁=(1-3)/2= -1
y₂=(1+3)/2=2

При у= -1
x² -2x-3= -1
x² -2x-3+1=0
x² -2x-2=0
D=4+8=12
x₁=(2-√12)/2=(2-2√3)/2=1-√3
x₂=1+√3
ответ: 1-√3;  1+√3

4) (x² -x-11)(x² -x-21)= -9
(x² -x-11)(x² -x-11-10)= -9

y=x² -x-11
y(y-10)= -9
y² -10y+9=0
D=100-36=64
y₁=(10-8)/2=1
y₂=(10+8)/2=9

При у=1
x² -x-11=1
x² -x-11-1=0
x² -x-12=0
D=1+48=49
x₁=(1-7)/2= -3
x₂=(1+7)/2=4

При у=9
x² -x-11=9
x² -x-11-9=0
x² -x-20=0
D=1+80=81
x₁=(1-9)/2= -4
x₂=(1+9)/2=5

ответ: -4; -3; 4; 5.
Dom540703174
Cos^2(x)+cos^2(2x)=cos^2(3x)+cos^2(4x) cos^2(x) - cos^2(3x) = cos^2(4x) - cos^2(2x) далее разность квадратов с обоих сторон (cos(x) - cos(3x))*(cos(x) + cos(3x)) = (cos(4x) - cos(2x))*(cos(4x) + cos(2x)) далее применяем формулы cosa-cosb=-2sin( (a+b)/2 )*sin( (a-b)/2 ) cosa+cosb=2cos( (a+b)/2 )*cos( (a-b)/2 ) получаем, -2sin( (x+3x)/2 )*sin( (x-3x)/2 ) * 2cos( (x+3x)/2 )*cos( (x-3x)/2 ) = = -2sin( (4x+2x)/2 )*sin( (4x-2x)/2 ) * 2cos( (4x+2x)/2 )*cos( (4x-2x)/2 ) слегка, 2-йки сокращаем, имеяя ввиду, что sin(-x)=-sin(x), а cos(-x)=cos(x) sin(2x)*sin(x)*cos(2x)*cos(x)=-sin(3x)*sin(x)*cos(3x)*cos(x) сокращая на sin(x) и cos(x) имеем ввиду, что это также является решением уравнения, т. е. уравнение распадается на три уравнения 1) sin(x)=0, тут x=пk, где k-целое число 2) cos(x)=0, тут x=п/2*k, где k-целое число 3) после сокращения на sinx и cosx sin(2x)cos(2x)=-sin(3x)cos(3x) здесь применяем формулу sin(2x)=2*sin(x)*cos(x), получаем 1/2*sin(4x)=-1/2*sin(6x) sin(4x)+sin(6x)=0 далее применяем формулу sina+sinb=2sin( (a+b)/2 )*cos( (a-b)/2 ), получаем 2sin( (4x+6x)/2 )*cos( (4x-6x)/2 ) = 0 на 2 сокращаем, получаем sin(5x)*cos(x) = 0 cos(x)=0 у нас уже имелось в пункте 2) остается sin(5x)=0 => 5x=пk => x=п/5*k, k - целое объединяем решения: 1)x=пk, где k-целое число 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое третье включает в себя первое, можно на тригонометрическом круге посмотреть, если так не понятно, поэтому остается 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое число дальше мудохаться не стоит, ответ: x=п/2*k, где k-целое число и x=п/5*k,где k - целое число p.s. п-это пи=3.1415 если что (число эйлера вроде как)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить методом постановки систему уравнений ​
Ваше имя (никнейм)*
Email*
Комментарий*