1. Найдите производные функций
А) y= x6 y`=6x5
б) y = 2 y`=0
в) y=5/x y`=-5/x^2
г) y = 3-5x y=-5
д) y= 8 √x + 0,5 cos x y`=4/Vx -0.5sinx
е) y=sinx / x y`={xcosx-sinx}/x^2
ж) y= x ctg x y`={ctgx-x/sin^2x}=cosx/sinx- x/sin^2x={cosxsinx-x}/sin^2x
з) y= (5x + 1)^7 y`=5*7(5x+1)^6=35(5x+1)^6
2.Найдите угол, который образует с положительным лучом оси абсцисс касательная к графику функции:
y= x^8/8 – x^5/5 - x √3 – 3 в точке x0= 1
y`=x^7-x^4-V3 tga=y`(1)=1-1-V3=-V3 a=120*
3. Вычислите если f(x)=2cos x+ x2- +5 что надо?
4. Прямолинейное движение точки описывается законом s=t4 – t2(м). Найдите ее скорость в момент времени t=3с.
v=s`=4t3-2t
v(3)=4*27-2*3=108-6=102 м/с
5. Найдите все значения х, при которых выполняется неравенство f/(x)<0, если
f(x)= 81x – 3x3
f`=81-9x^2=9(3-x)(3+x)
-3 3
- + -
xe(-oo,-3)U(3,+oo)
6. Найдите все значения х, при которых выполняется равенство f/(x)=0, если f(x)=cos2x - x√3 и x€[0,4π].
х км/ч - скорость пешехода
у км/ч - скорость велосипедиста
50 мин + 10 мин = 60 мин = 1 час - время, за которое пешеход расстояние от поселка до места встречи.
10 мин = 1/6 часа - время, которое понадобилось велосипедисту , чтобы преодолеть это же расстояние от поселка до места встречи.
Первое уравнение:
1 · х = · у
Умножим обе части на 6 и получим:
6x = y
полчаса = 0,5 часа
По условию 4x > 0,5y на 3 км.
Второе уравнение:
4x - 0,5y = 3
Во второе уравнение подставим у=6х и решим относительно х.
4х - 0,5·6х = 3
4х - 3х = 3
х = 3 км/ч - скорость пешехода
6 · 3 = 18 км/ч - скорость велосипедиста.
ответ: 3 км/ч;
18 км/ч
Поделитесь своими знаниями, ответьте на вопрос:
384. найдите первый член и разность арифметической прогрессии(а), если: а) а, +а +а = 18 иа, -а, - а = 120; б) а, +а, + а = -12 и а? + аз + a3 = 98.
a=0
Объяснение:
3a = 18a-a-1/120 a
3a = 2039/120 a
360a =2039a
360a-2039a =0
-1679a=0
a=0