julichca68
?>

Найдите координаты точек пересечения графиков функций y=-7x+1 и y=4x+7

Алгебра

Ответы

gabramova

y=-7x+1\; \; ,\; \; y=4x+7\\\\4x+7=-7x+1\\\\11x=-6\\\\x=-\frac{6}{11}\\\\y=-\frac{4\cdot 6}{11}+7=7-\frac{24}{11}=\frac{53}{11}=4\frac{9}{11}\\\\tochka\, (-\frac{6}{11}\, ;\, 4\frac{9}{11})

kseybar

приравняем правые части.

-7х+1=4х+7

-11х=6, х= -6/11

тогда у =-24/11+   7=53/11=  4   9/11

Точка пересечения одна, т.к. графиками служат прямые. и ее координаты (-6/11; 4  9/11)

Мария1414
Чертим в одной системе  координат два графика.

чертим систему координат, ставим стрелки в положительных направлениях (вверх и вправо), подписываем оси вправо х, вверх - у, отмечаем начало координат - точку О, отмечаем по каждой оси единичный отрезок в 1 клеточку.

Переходим к графикам:
у=√х - кривая, проходящая через начало координат - точку О, заполним таблицу:
х= 0    1    4    1/4
у= 0    1    2    1/2
Отмечаем точки на плоскости
Проводим линию через начало координат  и точки , подписываем график у=√х

у=2-х - прямая, для построения нужны две точки, запишем их в таблицу:
х=  0      4
у=  2     -2
Отмечаем точки  (0;2) и (4;-2) в системе координат и проводим через них прямую линию. Подписываем график у=2-х

Смотрим на точку пересечения двух данных прямых, отмечаем точку М, ищем её координаты,   записываем  М(1; 1) 
 Всё!
h777eta
Исходное неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ 1 \leq 3-x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1 \leq x-3 \leq 5 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -5 \leq x-3 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1+3 \leq x \leq 5+3 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -2 \leq x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 4 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right

x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;

а) неравенство эквивалентно:

-2 \leq x \leq 2 \ ;

x \in [ -2 ; 2 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

б) неравенство эквивалентно:

-2 \leq x-6 \leq 2 \ ;

6-2 \leq x \leq 2+6 \ ;

x \in [ 4 ; 8 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

в) неравенство эквивалентно:

-1 \leq x \leq 1 \ ;

x \in [ -1 ; 1 ] \ ;

Отрезок данного решения составляет половину от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;

г) неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 1 \leq 6-x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1 \leq x-6 \leq 2 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ -2 \leq x-6 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1+6 \leq x \leq 2+6 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 4 \leq x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 7 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right

x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;

Каждый из двух отрезков данного решения составляет четверть от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} + \frac{1}{8} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите координаты точек пересечения графиков функций y=-7x+1 и y=4x+7
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

mrubleva42
Шавкат кызы
pokupatel688
shuramuji
Нана_Елена
elenaowchinik4842
Сороченкова-Александр
bas7572513
Adassa00441
espectr-m
teya07
yusliva
Olgax732
Zeegofer
Chutaeva381