Повторные независимые испытания. Схема Бернулли. Число попаданий - случайная величина, принимающая значения от 0 до 5. Найдем вероятности появления этих значений.
Вероятность Значения 0. Число сочетаний из 5(выстрелов всего) по 0(рассматриваемое значение) - это 1 - умножим на 0.5 в степени 0 и на 1-0.5 в степени 5-0. Получаем 0.03125. Это 1/32.
Вероятность значения 1. Число сочетаний из 5 по 1 - это 5 - умножается на 0.5 в степени 1 и на 1-0.5 в степени 5-1. Получаем 0.15625. Это 5/32.
Вероятность значения 2. Число сочетаний из 5 по 2 - это 10 - умножаем на 0.5 в степени 2 ина 1-0.5 в степени 5-2. Получаем 0.3125. Это 10/32.
Далее вероятности располагаются в обратном порядке в силу симметричности числа сочетаний и того, что 1-0.5 равно 0.5.
Ряд распределения:
0 1 2 3 4 5
0,3125 0,15625 0,3125 0,3125 0,15625 0,03125
Проверка. Сумма всех вероятностей равна 1.
Поделитесь своими знаниями, ответьте на вопрос:
Уравнение касательной f(x)=1-( корень из 3/ x) x0=2
y = x³ + 3x² - 45x - 2
Найдём производную :
y' = (x³)' + 3(x²)' - 45(x)' - 2' = 3x² + 6x - 45
Приравняем производную к нулю и найдём критические точки :
3x² + 6x - 45 = 0
x² + 2x - 15 = 0
По теореме Виета :
x₁ = - 5
x₂ = 3
Найдём значения функции в критических точках и на концах отрезка и сравним их .
y(- 5) = (- 5)³ + 3 * (- 5)² - 45 * (- 5) - 2 = - 125 + 75 + 225 - 2 = 173
y(3) = 3³ + 3 * 3² - 45 * 3 - 2 = 27 + 27 - 135 - 2 = - 83
y(- 8) = (- 8)³ + 3 * (- 8)² - 45 * (- 8) - 2 = - 512 + 192 + 360 - 2 = 38
y(8) = 8³ + 3 * 8² - 45 * 8 - 2 = 512 + 192 - 360 - 2 = 342
y(наим) = - 83
y(наиб) = 342