galinasemyan689
?>

Умоляю, надо.для функцииf(x)=(x+1)^6 найдите f(1) и f (√x-1)​

Алгебра

Ответы

oskon008
f(1)=64
f(корень из x - 1)=|x|^3
Умоляю, надо.для функцииf(x)=(x+1)^6 найдите f(1) и f (√x-1)​
vallium8354
Решение:
Обозначим знаменатель дроби за (а), тогда числитель дроби равен (а-3) и сама дробь представляет:
(а-3)/а
Если к числителю прибавим 3, то числитель станет равным:
(а-3+3)=а,
а к знаменателю прибавим два знаменатель примет значение:
(а+2)
сама дробь представит в виде:
а/(а+2)
А так как получившаяся дробь увеличится на 7/40 , составим уравнение:
а/(а+2) - (а-3)/а=7/40
Приведём уравнение к общему знаменателю (а+2)*а*40
а*40*а - 40*(а+2)*(а-3)=7*(а+2)*а
40а²- 40*(а²+2а-3а-6)=7*(а²+2а)
40а²-40а²+40а+240=7а²+14а
7а²+14а-40а-240=0
7а²-26а-240=0
а1,2=(26+-D)/2*7
D=√(26²-4*7*-240)=√(676+6720)=√7396=86
а1,2=(26+-86)/14
а1=(26+86)/14=112/14=8
а2=(26-86)/14=-60/14=-4 1/15 - не соответствует условию задачи
Подставим значение а=8 в дробь (а-3)/а
(8-3)/8=5/8

ответ: 5/8
ostapbender1111
Для начала представим число 129 в виде простых множителей:
129 = 43 × 3

Пусть искомое число состоит из цифр a, b, c, т.е. число такое 100a + 10b + c.
Тогда сумма цифр этого числа равна (a + b + c). Когда мы повторяем число 12 раз, то и сумма его цифр увеличится в 12 раз, т.е. 12 × (a + b + c). Сумма цифр делится на 3! Значит, какое бы мы трёхзначное число не взяли, повторив его 12, уже будет делиться на 3.

Пусть x = 100a + 10b + c искомое число, которое делится на 43, но не делится на 3. Когда мы число x повторим 12 раз получим такое число:
x + 10^3x + 10^6x +10^9x + 10^{12}x + 10^{15}x + 10^{18}x + 10^{21}x+ \\ \\ + 10^{24}x+ 10^{27}x +10^{30}x + 10^{33}x = \\ \\ \\ x(1+10^3 + 10^6 +10^9 + 10^{12} + 10^{15} + 10^{18} +\\ \\ + 10^{21}+10^{24}+ 10^{27}+10^{30} + 10^{33})

Если число x будет делиться на 43, то и вся наша длинная конструкция будет делиться 43, ну а на 3 она делится из-за повторения 12 раз, что было доказано выше.
В общем, надо подобрать наибольшее трёхзначное число, которое будет делиться на 43, но де будет делиться на 3, а значит не будет делиться и на 129. Но после 12-кратного повторения этого числа, поученное 36 значное число будет делиться на 129.

Подбираем: 1000 : 43 = 23 и 11 в остатке. 43 × 23 = 989.
Проверим, делится ли оно на 3? Сумма цифр 9 + 8 + 9 = 26, следовательно, число 989 не делится на 3.

ответ: 989

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Умоляю, надо.для функцииf(x)=(x+1)^6 найдите f(1) и f (√x-1)​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

schumacher8
bellatrixstudio
coffeenik20233
Merkuloff78
agitahell149
Бирюков Карпова1379
danaya3005
Сергеевич1907
Михаил736
shoko-2379
zyf0066
nadlen76
infosmolenskay
Savelieva24
kol-nat26