Обозначим длины сторон прямоугольника через х и у.
Согласно условию задачи, площадь данного прямоугольника равна 72 см², следовательно, имеет место следующее соотношение:
х * у = 72.
Также известно, что периметр данного прямоугольника равен 36 см, , следовательно, имеет место следующее соотношение:
2 * (х + у) = 36.
Упрощая данное соотношение, получаем:
х + у = 36 / 2;
х + у = 18;
х = 18 - у.
Подставляя полученное значение для х в соотношение х * у = 72, получаем:
(18 - у) * у = 72.
Решаем полученное уравнение:
18у - у² = 72;
у² - 18у + 72 = 0;
у = 9 ± √(81 - 72) = 9 ± √9 = 9 ± 3.
у1 = 9 - 3 = 6;
у2 = 9 + 3 = 12.
Зная у, находим х:
х1 = 18 - у1 = 18 - 6 = 12;
х2 = 18 - у2 = 18 - 12 = 6.
ответ: стороны данного прямоугольника равны 6 см и 12 см.
Для построение этого вида функций, которые под знаком модуля содержат всю функцию, можно построить отдельно функцию, которая находится под знаком модуля, а затем отобразить относительно оси Ох ту ее часть, для которой значения у – отрицательные. Это позволит получить положительные значения у для всей функции.
Итак, построим параболу, которая будет графиком заданной функции без знака модуля:
у1 = 6x – 5 – x^2.
Сначала найдем ее вершину с формулы х = –b / (2a):
х = –6 / (2*(–1)) = 3
Вычислим значение функции:
у1(3) = 6*3 – 5 – 3^2 = 4.
Получили в точке (3; 4).
Точки пересечения с осью Ох найдем, подставив в уравнение для у1 значение у1 = 0 и решив полученное уравнение:
6x – 5 – x^2 = 0
По теореме Виета или любым другим доступным находим, что корнями уравнения будут значения 1 и 5. Значит функция пересечет ось Ох в точках (1; 0) и (5; 0).
Построенный график – это график функции у1 = 6x – 5 – x^2.
Теперь отображаем относительно оси Ох все, что находится под ней, и получаем график функции у = |6x – 5 – x^2|.
Построить график можно и другим подставляя значения х в заданную функцию с модулем. Но проведенный анализ Вам понять сущность модуля при построении графиков.
Объяснение:
Я к примеру объяснил.
Поделитесь своими знаниями, ответьте на вопрос:
Выражение (9a^1)^2 * (4b)^3 /(дробь) (36a^3b)^2.
Объяснение:
решение на фото,..,....,.,.,.,..,.,.,.,.,,.....