1. Диета: не больше 5-и тортиков в день:
2. Максимум может съесть 8 тортиков в день;
3. Условие, если 1 день - 8 тортиков,
то 2 следующих дня - по 3 тортика в день;
Если предположить, что с 01.12 до 31.12 сила воли слону не оказала ни разу, то слон съел бы за месяц (в декабре 31 день)
31*5=155 тортиков
Поскольку, по условию, сила воли иногда отказывает, то минимальное количество дней, когда слону отказала сила воли, = 1.
Если предположить, что слон съел максимальное количество тортиков, 8 шт, 31 декабря, то количество съеденного будет
30*5+8=158 тортиков, и диета - закончилась))
Если предположить, что день отказа силы воли пришелся не позже, чем 3 дня до конца декабря, то количество съеденных тортиков будет:
28*5+8+3+3=154 тортика
ответ: 158 тортиков
Поделитесь своими знаниями, ответьте на вопрос:
Квадратный трехчлен f(x) имеет 2 различных корня.может ли так оказаться, что уравнение f(f(x)) = 0 имеет 3 различных корня, а уравнение f(f(f( = 0 — 7 различных корней?
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней