Решение: Обозначим первоначальную массу олова в сплаве за (х) кг, тогда процентное содержание олова в сплаве составляет: х/16*100% При добавлении олова, масса сплава стала равной: 16+2=18(кг) а содержание олова в новом сплаве составило: (х+2) кг процентное содержание олова в новом сплаве равно: (х+2)/18*100% А так как в новом сплаве содержание олова на 5% больше чем в первоначальном сплаве, составим уравнение: (х+2)/18*100% - х/16*100%=5% 100*(х+2)/18 - 100*х/16=5 Приведём к общему знаменателю 144 8*100*(х+2) - 9*100*х=144*5 800х+1600 -900х=720 -100х=720-1600 -100х=-880 х=-880 : -100 х=8,8 (кг) -первоначальное количество олова в сплаве
ответ: Первоначальное количество олова в сплаве 8,8кг
uglichwatch
01.03.2023
Точка x0 называется точкой максимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)< f(x0).Точка x0 называется точкой минимума функции f(x), если существует такая окрестность точки x0, что для всех x ≠ x0 из этой окрестности выполняется неравенство f(x)> f(x0).Точки минимума и точки максимума называются точками экстремума.Теорема. Если x0 – точка экстремума дифференцируемой функции f(x), то f ′(x0) =0.Точки, в которых функция имеет производную, равную нулю, или недифференцируема (не имеет производной), называют критическими точками. Точки, в которых производная равна 0, называют стационарными.Геометрический смысл: касательная к графику функции y=f(x) в экстремальной точке параллельна оси абсцисс (OX), и поэтому ее угловой коэффициент равен 0 ( k = tg α = 0).Теорема: Пусть функция f(x) дифференцируема на интервале (a;b), x0 С (a;b), и f ′(x0) =0. Тогда:1) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «плюса» на «минус», то x0 – точка максимума.2) Если при переходе через стационарную точку x0 функции f(x) ее производная меняет знак с «минуса» на «плюс» , то x0 – точка минимума. ПРАВИЛО нахождения наибольшего и наименьшего значения функции f(x) на отрезке [a;b]. 1. Найти призводную функции и приравнять нулю. Найти критические точки.2. Найти значения функции на концах отрезка, т.е. числа f(a) и f(b).3. Найти значения функции в тех критических точках, которые принадлежат [a;b].4. Из найденных значений выбрать наибольшее и наименьшее. ПРАВИЛО нахождения минимума и максимума функции f(x) на интервале (a;b).1. Найти критические точки f(x) (в которых f ′(x)=0 или f(x) не существует) .2. Нанести их на числовую прямую (только те, которые принадлежат (a,b) ).f ′(x) + – + a x0x1 bf (x) / \ /3. Расставить знаки производной в строке f ′(x) , расставить стрелки в строке f(x).4. x max = x0, x min = x1.5. y max = y(x0), y min = y(x1).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Построив угол, вычислите : sin120, cos 2п/3, sin135, cos 3п/4, sin 5п/6, cos150, sin п, cos 180 оч надо!
Обозначим первоначальную массу олова в сплаве за (х) кг, тогда процентное содержание олова в сплаве составляет:
х/16*100%
При добавлении олова, масса сплава стала равной:
16+2=18(кг)
а содержание олова в новом сплаве составило:
(х+2) кг
процентное содержание олова в новом сплаве равно:
(х+2)/18*100%
А так как в новом сплаве содержание олова на 5% больше чем в первоначальном сплаве, составим уравнение:
(х+2)/18*100% - х/16*100%=5%
100*(х+2)/18 - 100*х/16=5 Приведём к общему знаменателю 144
8*100*(х+2) - 9*100*х=144*5
800х+1600 -900х=720
-100х=720-1600
-100х=-880
х=-880 : -100
х=8,8 (кг) -первоначальное количество олова в сплаве
ответ: Первоначальное количество олова в сплаве 8,8кг